1
|
Javelle F, Dao G, Ringleb M, Pulverer W, Bloch W. Exploring the association between serotonin transporter promoter region methylation levels and depressive symptoms: a systematic review and multi-level meta-analysis. Transl Psychiatry 2025; 15:161. [PMID: 40319044 PMCID: PMC12049537 DOI: 10.1038/s41398-025-03356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 05/07/2025] Open
Abstract
Depressive disorders result from complex interactions among genetic, epigenetic, and environmental factors. DNA methylation, a key epigenetic mechanism, is crucial in understanding depressive symptoms development. The serotonin transporter gene (5-HTT) and its polymorphisms, like 5-HTTLPR, have been extensively studied in relation to depression, yet conflicting findings regarding the association between 5-HTT promoter methylation and depressive symptoms persist, largely due to methodological differences. Thus, this systematic review and meta-analysis aims to assess (1) 5-HTT promoter methylation levels between depressed and non-depressed conditions and (2) the association between 5-HTT methylation and depressive symptoms severity. We searched PubMed, Google Scholar, and Web of Science from inception to January 15th, 2025 (PROSPERO: CRD42023355414) and performed two independent multi-level meta-analyses to answer our aims. Twenty-four trials were included in the systematic review. All reported effects carried potential for bias. The meta-analysis for depression occurrence (12 studies - 2028 subjects - 127 effects) indicated no significant effect (Hedges'g = 0.06) with moderate within- and low between-study heterogeneity. The depression severity analysis (14 studies - 2296 subjects - 116 effects) revealed a null effect size (Fisher's Z = 0.05), with no within- and moderate between-study heterogeneity. Asymmetry was detected for both meta-analyses. Moderator analyses demonstrated no significant effects of depression severity, methylation techniques, single-CpG sites, cell types assessed, age, and female percentage. This comprehensive review provides insights into the intricate interplay between 5-HTT promoter methylation and depressive symptoms. Furthermore, it offers well-considered recommendations for future research endeavors and delineates guidelines for reporting methylation research.
Collapse
Affiliation(s)
- F Javelle
- NeuroPsychoImmunology research unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany.
| | - G Dao
- NeuroPsychoImmunology research unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
- University of Cologne, Cologne, Germany
| | - M Ringleb
- NeuroPsychoImmunology research unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
- Department of Movement Science, University of Münster, Münster, Germany
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
| | - W Pulverer
- Austrian Institute of Technology, Vienna, Austria
| | - W Bloch
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
2
|
Handschuh PA, Murgaš M, Winkler D, Winkler-Pjrek E, Hartmann AM, Domschke K, Baldinger-Melich P, Rujescu D, Lanzenberger R, Spies M. Summer and SERT: Effect of daily sunshine hours on SLC6A4 promoter methylation in seasonal affective disorder. World J Biol Psychiatry 2025; 26:159-169. [PMID: 40114401 DOI: 10.1080/15622975.2025.2477463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVES Knowledge on how sunlight impacts SERT activity via SLC6A4 promoter methylation in Seasonal Affective Disorder (SAD) remains limited. This study aimed to investigate the effect of daily sunshine duration on SLC6A4 promoter methylation in 28 patients with SAD and 40 healthy controls (HC). METHODS Daily sunlight data for Vienna, Austria (mean of 28 days before blood sampling), were obtained from ©GeoSphere Austria. A general linear model analysed SLC6A4 promoter methylation as the dependent variable, with sunlight hours as the independent variable, and group (SAD, HC), age, sex, and 5-HTTLPR/rs25531 as covariates. Exploratory analyses examined the effects of sunlight hours and methylation on Beck Depression Inventory (BDI) scores. RESULTS Sunlight had a significant effect on SLC6A4 promoter methylation (p = 0.03), with more sunlight hours resulting in lower methylation (r = -0.25). However, the interaction between sunlight and group was non-significant, suggesting a rather general effect across both groups. Sunlight also influenced BDI scores (p < 0.01), with fewer sunlight hours leading to higher scores (r = -0.25), which aligns with previous research. SLC6A4 promoter methylation had no significant effect on BDI scores. CONCLUSIONS Our findings suggest that sunlight influences SLC6A4 methylation without SAD specificity.
Collapse
Affiliation(s)
- Patricia A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Edda Winkler-Pjrek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Annette M Hartmann
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Germany
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Dhieb D, Bastaki K. Pharmaco-Multiomics: A New Frontier in Precision Psychiatry. Int J Mol Sci 2025; 26:1082. [PMID: 39940850 PMCID: PMC11816785 DOI: 10.3390/ijms26031082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The landscape of psychiatric care is poised for transformation through the integration of pharmaco-multiomics, encompassing genomics, proteomics, metabolomics, transcriptomics, epigenomics, and microbiomics. This review discusses how these approaches can revolutionize personalized treatment strategies in psychiatry by providing a nuanced understanding of the molecular bases of psychiatric disorders and individual pharmacotherapy responses. With nearly one billion affected individuals globally, the shortcomings of traditional treatments, characterized by inconsistent efficacy and frequent adverse effects, are increasingly evident. Advanced computational technologies such as artificial intelligence (AI) and machine learning (ML) play crucial roles in processing and integrating complex omics data, enhancing predictive accuracy, and creating tailored therapeutic strategies. To effectively harness the potential of pharmaco-multiomics approaches in psychiatry, it is crucial to address challenges such as high costs, technological demands, and disparate healthcare systems. Additionally, navigating stringent ethical considerations, including data security, potential discrimination, and ensuring equitable access, is essential for the full realization of this approach. This process requires ongoing validation and comprehensive integration efforts. By analyzing recent advances and elucidating how different omic dimensions contribute to therapeutic customization, this review aims to highlight the promising role of pharmaco-multiomics in enhancing patient outcomes and shifting psychiatric treatments from a one-size-fits-all approach towards a more precise and patient-centered model of care.
Collapse
Affiliation(s)
| | - Kholoud Bastaki
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
4
|
Bruzzone SEP, Ozenne B, Fisher PM, Ortega G, Jørgensen MB, Knudsen GM, Lesch KP, Frokjaer VG. DNA methylation of serotonin genes as predictive biomarkers of antidepressant treatment response. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111160. [PMID: 39368538 DOI: 10.1016/j.pnpbp.2024.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Selective serotonin reuptake inhibitors (SSRI) are frequently ineffective in treating depressive episodes and biomarkers are needed to optimize antidepressant treatment outcomes. DNA methylation levels of serotonin transporter (SLC6A4) and tryptophan hydroxylase 2 genes (TPH2) have been suggested to predict antidepressant clinical outcomes but their applicability remains uncertain. In this study, we: 1) evaluated SLC6A4/TPH2 methylation biomarker potential for predicting clinical outcomes after escitalopram treatment; 2) evaluated whether changes in SLC6A4/TPH2 methylation are informative of treatment mechanisms. We used a cohort of 90 unmedicated patients with major depressive disorder that were part of a 12-week open-label longitudinal trial and compared our observations with previous findings. Depressive symptoms were measured at baseline and after 8 and 12 weeks of treatment using the Hamilton Depression Rating Scale (HAMD6/17). We found an association between baseline TPH2 methylation and both clinical response (β:3.43; p = 0.01; 95 % CI:[0.80; 6.06]) and change in depressive symptoms after 8 weeks (β:-45.44; p = 0.01; 95 %CI:[- -78.58; -12.30]). However, we found no evidence for predictive value of any gene (TPH2 AUC: 0.74 95 % CI:[0.42;0.79]; SLC6A4: AUC: 0.61; 95 % CI: [0.48-0.78]). Methylation levels changed at the trend level for CpG sites of SLC6A4 and TPH2 over the course of 12 weeks of treatment. In addition, similar to previous observations, we found a trend for an association between methylation of SLC6A4 CpG2 (chr17:30,236,083) and HAMD17 change after 12 weeks. Our findings suggest that although TPH2 and SLC6A4 methylation may be informative of antidepressant treatment outcome, they are unlikely to prove useful as clinical predictor tools.
Collapse
Affiliation(s)
- Silvia Elisabetta Portis Bruzzone
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Public Health, Section of Biostatistics, University of Copenhagen, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Gabriela Ortega
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Martin Balslev Jørgensen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Vibe Gedsoe Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Psychiatric Centre Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Rivera LM, Uwizeye G, Stolrow H, Christensen B, Rutherford J, Thayer Z. Prenatal exposure to genocide and subsequent adverse childhood events are associated with DNA methylation of SLC6A4, BDNF, and PRDM8 in early adulthood in Rwanda. Sci Rep 2024; 14:27879. [PMID: 39537739 PMCID: PMC11560948 DOI: 10.1038/s41598-024-78035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
We investigated associations between prenatal genocidal trauma, including maternal rape, and postnatal adverse childhood experiences (ACEs) on DNA methylation of genes associated with the stress response. In a comparative cross-sectional study of 91 Rwandan young adults, categorized by prenatal exposure to genocide and maternal rape, genocide without rape, and unexposed controls, we analyzed DNA methylation from dried blood spots and assessed ACEs and depression and anxiety symptoms at age 24. Prenatal exposure to maternal rape was associated with DNA methylation changes in BDNF and SLC6A4, with the association in BDNF attenuated after including ACE exposure in the model. Genocide exposure without rape was associated with methylation changes in PRDM8 after adjusting for early adversity. Methylation in BDNF and SLC6A4 correlated with depression and anxiety symptoms. These findings underscore the impact of prenatal and postnatal trauma on DNA methylation and mental wellbeing, emphasizing the need for continued support for survivors in the decades after conflict.
Collapse
Affiliation(s)
- Luisa Maria Rivera
- Department of Anthropology, Hanover, NH, USA.
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
| | - Glorieuse Uwizeye
- Arthur Labatt Family School of Nursing, Western University, London, ON, Canada
| | - Hannah Stolrow
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Brock Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | | | | |
Collapse
|
6
|
Schiele MA, Crespo Salvador O, Lipovsek J, Schwarte K, Schlosser P, Zwanzger P, Arolt V, Baune BT, Köttgen A, Domschke K. Epigenome-Wide DNA Methylation in Unipolar Depression: Predictive Biomarker of Antidepressant Treatment Response? Int J Neuropsychopharmacol 2024; 27:pyae045. [PMID: 39367879 PMCID: PMC11558245 DOI: 10.1093/ijnp/pyae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Despite the well-documented efficacy of antidepressant agents for the treatment of major depressive disorder (MDD), initial treatment nonresponse rates are high. Recent years have seen an increase in research into predictive biomarkers toward improving diagnosis and individualized treatment. Among those, epigenetic mechanisms such as DNA methylation constitute promising candidate markers in predicting antidepressant treatment response in MDD. The present study sought to address epigenome-wide DNA methylation as a predictor of antidepressant treatment response in the largest sample to date of patients with MDD. METHODS Epigenome-wide DNA methylation was analyzed using the Infinium MethylationEPIC BeadChip in peripheral blood of n = 230 Caucasian patients with MDD receiving 6-week antidepressant treatment in a naturalistic in-patient setting as well as in a subsample of n = 107 patients primarily receiving continuous treatment with serotonin reuptake inhibitors or serotonin and norepinephrine reuptake inhibitors. Treatment response was assessed by means of the Hamilton Depression Scale. RESULTS No genome-wide significant hits were observed. Suggestive (P < 1E-5) epigenome-wide evidence was discerned for altered DNA methylation at 6 CpG sites (LOC102724467, LOC100506023, RSPO2, SAG, IL16, PRKCI) to predict response to naturalistic antidepressant treatment. In patients treated with serotonin reuptake inhibitors or serotonin and norepinephrine reuptake inhibitors, differential DNA methylation at 11 CpGs, for example, mapping to the TIMP2, VDAC1, or SORL1 genes, was suggestively associated with treatment response. CONCLUSIONS The present results provide preliminary evidence for altered DNA methylation patterns to be associated with antidepressant treatment response in MDD. Provided significant replication in independent and larger samples, the present findings might in the future aid in clinical decision-making toward more individualized and thus more efficacious treatments of MDD.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oscar Crespo Salvador
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Lipovsek
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
| | - Kathrin Schwarte
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Pascal Schlosser
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
| | - Peter Zwanzger
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
- kbo-Inn-Salzach-Klinikum, Wasserburg am Inn, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Muenster, Muenster, Germany
| | - Bernhard T Baune
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Dahrendorff J, Currier G, Uddin M. Leveraging DNA methylation to predict treatment response in major depressive disorder: A critical review. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32985. [PMID: 38650309 DOI: 10.1002/ajmg.b.32985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Major depressive disorder (MDD) is a debilitating and prevalent mental disorder with a high disease burden. Despite a wide array of different treatment options, many patients do not respond to initial treatment attempts. Selection of the most appropriate treatment remains a significant clinical challenge in psychiatry, highlighting the need for the development of biomarkers with predictive utility. Recently, the epigenetic modification DNA methylation (DNAm) has emerged to be of great interest as a potential predictor of MDD treatment outcomes. Here, we review efforts to date that seek to identify DNAm signatures associated with treatment response in individuals with MDD. Searches were conducted in the databases PubMed, Scopus, and Web of Science with the concepts and keywords MDD, DNAm, antidepressants, psychotherapy, cognitive behavior therapy, electroconvulsive therapy, transcranial magnetic stimulation, and brain stimulation therapies. We identified 32 studies implicating DNAm patterns associated with MDD treatment outcomes. The majority of studies (N = 25) are focused on selected target genes exploring treatment outcomes in pharmacological treatments (N = 22) with a few studies assessing treatment response to electroconvulsive therapy (N = 3). Additionally, there are few genome-scale efforts (N = 7) to characterize DNAm patterns associated with treatment outcomes. There is a relative dearth of studies investigating DNAm patterns in relation to psychotherapy, electroconvulsive therapy, or transcranial magnetic stimulation; importantly, most existing studies have limited sample sizes. Given the heterogeneity in both methods and results of studies to date, there is a need for additional studies before existing findings can inform clinical decisions.
Collapse
Affiliation(s)
- Jan Dahrendorff
- Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Glenn Currier
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, Florida, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
8
|
Shaikh M, Doshi G. Epigenetic aging in major depressive disorder: Clocks, mechanisms and therapeutic perspectives. Eur J Pharmacol 2024; 978:176757. [PMID: 38897440 DOI: 10.1016/j.ejphar.2024.176757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Depression, a chronic mental disorder characterized by persistent sadness, loss of interest, and difficulty in daily tasks, impacts millions globally with varying treatment options. Antidepressants, despite their long half-life and minimal effectiveness, leave half of patients undertreated, highlighting the need for new therapies to enhance well-being. Epigenetics, which studies genetic changes in gene expression or cellular phenotype without altering the underlying Deoxyribonucleic Acid (DNA) sequence, is explored in this article. This article delves into the intricate relationship between epigenetic mechanisms and depression, shedding light on how environmental stressors, early-life adversity, and genetic predispositions shape gene expression patterns associated with depression. We have also discussed Histone Deacetylase (HDAC) inhibitors, which enhance cognitive function and mood regulation in depression. Non-coding RNAs, (ncRNAs) such as Long Non-Coding RNAs (lncRNAs) and micro RNA (miRNAs), are highlighted as potential biomarkers for detecting and monitoring major depressive disorder (MDD). This article also emphasizes the reversible nature of epigenetic modifications and their influence on neuronal growth processes, underscoring the dynamic interplay between genetics, environment, and epigenetics in depression development. It explores the therapeutic potential of targeting epigenetic pathways in treating clinical depression. Additionally, it examines clinical findings related to epigenetic clocks and their role in studying depression and biological aging.
Collapse
Affiliation(s)
- Muqtada Shaikh
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
9
|
Bruzzone SEP, Ozenne B, Fisher PM, Ortega G, Jensen PS, Dam VH, Svarer C, Knudsen GM, Lesch KP, Frokjaer VG. No association between peripheral serotonin-gene-related DNA methylation and brain serotonin neurotransmission in the healthy and depressed state. Clin Epigenetics 2024; 16:71. [PMID: 38802956 PMCID: PMC11131311 DOI: 10.1186/s13148-024-01678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Methylation of serotonin-related genes has been proposed as a plausible gene-by-environment link which may mediate environmental stress, depressive and anxiety symptoms. DNA methylation is often measured in blood cells, but little is known about the association between this peripheral epigenetic modification and brain serotonergic architecture. Here, we evaluated the association between whole-blood-derived methylation of four CpG sites in the serotonin transporter (SLC6A4) and six CpG sites of the tryptophan hydroxylase 2 (TPH2) gene and in-vivo brain levels of serotonin transporter (5-HTT) and serotonin 4 receptor (5-HT4) in a cohort of healthy individuals (N = 254) and, for 5-HT4, in a cohort of unmedicated patients with depression (N = 90). To do so, we quantified SLC6A4/TPH2 methylation using bisulfite pyrosequencing and estimated brain 5-HT4 and 5-HTT levels using positron emission tomography. In addition, we explored the association between SLC6A4 and TPH2 methylation and measures of early life and recent stress, depressive and anxiety symptoms on 297 healthy individuals. RESULTS We found no statistically significant association between peripheral DNA methylation and brain markers of serotonergic neurotransmission in patients with depression or in healthy individuals. In addition, although SLC6A4 CpG2 (chr17:30,236,083) methylation was marginally associated with the parental bonding inventory overprotection score in the healthy cohort, statistical significance did not remain after accounting for blood cell heterogeneity. CONCLUSIONS We suggest that findings on peripheral DNA methylation in the context of brain serotonin-related features should be interpreted with caution. More studies are needed to rule out a role of SLC6A4 and TPH2 methylation as biomarkers for environmental stress, depressive or anxiety symptoms.
Collapse
Affiliation(s)
- S E P Bruzzone
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - P M Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - G Ortega
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - P S Jensen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - V H Dam
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - C Svarer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - G M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - K P Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - V G Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Psychiatric Centre Copenhagen, Mental Health Services, Frederiksberg, Capital Region of Denmark, Denmark.
| |
Collapse
|
10
|
Sreeja V, Jose A, Patel S, Menon B, Athira KV, Chakravarty S. Pharmacogenetics of selective serotonin reuptake inhibitors (SSRI): A serotonin reuptake transporter (SERT)-based approach. Neurochem Int 2024; 173:105672. [PMID: 38157886 DOI: 10.1016/j.neuint.2023.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Neuropsychiatric disorders are considered to be the most common cause of disability worldwide. Serotonin and its transporter is a prominent paradigm in mood disorders. Response to selective serotonin reuptake inhibitors (SSRI) is altered due to heterogeneity in the serotonin transporter gene, SLC6A4 (solute carrier family 6 member 4). The reported polymorphisms are found to be in different regions of the transporter gene: promoter region (5-HTTLPR and various single nucleotide polymorphisms within it), intron (STin2), and exon 9 (I425V). The long and short alleles of the 5-HTTLPR gene, which are prevalent among variations, may mediate differential effects. In long allelic variant carriers, an increased response to SSRI and timely recovery is due to increased availability of SERT. Whereas, SERT availability is significantly decreased in short allelic carriers, necessitating a reduction in SSRI dosage due to the increased risk of adverse drug reactions. Thus, pharmacogenetic investigations are required to understand the impact of functional variations on the efficacy and tolerability of SSRI. Identifying the carrier variants may aid in clear-decision making of the treatment regimen, aiding the approach of personalized medication.
Collapse
Affiliation(s)
- V Sreeja
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Shashikant Patel
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - K V Athira
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
11
|
Lenze E, Torous J, Arean P. Digital and precision clinical trials: innovations for testing mental health medications, devices, and psychosocial treatments. Neuropsychopharmacology 2024; 49:205-214. [PMID: 37550438 PMCID: PMC10700595 DOI: 10.1038/s41386-023-01664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Mental health treatment advances - including neuropsychiatric medications and devices, psychotherapies, and cognitive treatments - lag behind other fields of clinical medicine such as cardiovascular care. One reason for this gap is the traditional techniques used in mental health clinical trials, which slow the pace of progress, produce inequities in care, and undermine precision medicine goals. Newer techniques and methodologies, which we term digital and precision trials, offer solutions. These techniques consist of (1) decentralized (i.e., fully-remote) trials which improve the speed and quality of clinical trials and increase equity of access to research, (2) precision measurement which improves success rate and is essential for precision medicine, and (3) digital interventions, which offer increased reach of, and equity of access to, evidence-based treatments. These techniques and their rationales are described in detail, along with challenges and solutions for their utilization. We conclude with a vignette of a depression clinical trial using these techniques.
Collapse
Affiliation(s)
- Eric Lenze
- Departments of Psychiatry and Anesthesiology, Washington University School of Medicine, St Louis, MO, USA.
| | - John Torous
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Patricia Arean
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Radosavljevic M, Svob Strac D, Jancic J, Samardzic J. The Role of Pharmacogenetics in Personalizing the Antidepressant and Anxiolytic Therapy. Genes (Basel) 2023; 14:1095. [PMID: 37239455 PMCID: PMC10218654 DOI: 10.3390/genes14051095] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Pharmacotherapy for neuropsychiatric disorders, such as anxiety and depression, has been characterized by significant inter-individual variability in drug response and the development of side effects. Pharmacogenetics, as a key part of personalized medicine, aims to optimize therapy according to a patient's individual genetic signature by targeting genetic variations involved in pharmacokinetic or pharmacodynamic processes. Pharmacokinetic variability refers to variations in a drug's absorption, distribution, metabolism, and elimination, whereas pharmacodynamic variability results from variable interactions of an active drug with its target molecules. Pharmacogenetic research on depression and anxiety has focused on genetic polymorphisms affecting metabolizing cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, P-glycoprotein ATP-binding cassette (ABC) transporters, and monoamine and γ-aminobutyric acid (GABA) metabolic enzymes, transporters, and receptors. Recent pharmacogenetic studies have revealed that more efficient and safer treatments with antidepressants and anxiolytics could be achieved through genotype-guided decisions. However, because pharmacogenetics cannot explain all observed heritable variations in drug response, an emerging field of pharmacoepigenetics investigates how epigenetic mechanisms, which modify gene expression without altering the genetic code, might influence individual responses to drugs. By understanding the epi(genetic) variability of a patient's response to pharmacotherapy, clinicians could select more effective drugs while minimizing the likelihood of adverse reactions and therefore improve the quality of treatment.
Collapse
Affiliation(s)
- Milica Radosavljevic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Jasna Jancic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
13
|
Lichter K, Klüpfel C, Stonawski S, Hommers L, Blickle M, Burschka C, Das F, Heißler M, Hellmuth A, Helmel J, Kranemann L, Lechner K, Lehrieder D, Sauter A, Schiele MA, Vijayakumar V, von Broen M, Weiß C, Morbach C, Störk S, Gelbrich G, Heuschmann PU, Higuchi T, Buck A, Homola GA, Pham M, Menke A, Domschke K, Kittel-Schneider S, Deckert J. Deep phenotyping as a contribution to personalized depression therapy: the GEParD and DaCFail protocols. J Neural Transm (Vienna) 2023; 130:707-722. [PMID: 36959471 PMCID: PMC10121520 DOI: 10.1007/s00702-023-02615-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 03/25/2023]
Abstract
Depressive patients suffer from a complex of symptoms of varying intensity compromising their mood, emotions, self-concept, neurocognition, and somatic function. Due to a mosaic of aetiologies involved in developing depression, such as somatic, neurobiological, (epi-)genetic factors, or adverse life events, patients often experience recurrent depressive episodes. About 20-30% of these patients develop difficult-to-treat depression. Here, we describe the design of the GEParD (Genetics and Epigenetics of Pharmaco- and Psychotherapy in acute and recurrent Depression) cohort and the DaCFail (Depression-associated Cardiac Failure) case-control protocol. Both protocols intended to investigate the incremental utility of multimodal biomarkers including cardiovascular and (epi-)genetic markers, functional brain and heart imaging when evaluating the response to antidepressive therapy using comprehensive psychometry. From 2012 to 2020, 346 depressed patients (mean age 45 years) were recruited to the prospective, observational GEParD cohort protocol. Between 2016 and 2020, the DaCFail case-control protocol was initiated integrating four study subgroups to focus on heart-brain interactions and stress systems in patients > 50 years with depression and heart failure, respectively. For DaCFail, 120 depressed patients (mean age 60 years, group 1 + 2), of which 115 also completed GEParD, and 95 non-depressed controls (mean age 66 years) were recruited. The latter comprised 47 patients with heart failure (group 3) and 48 healthy subjects (group 4) of a population-based control group derived from the Characteristics and Course of Heart Failure Stages A-B and Determinants of Progression (STAAB) cohort study. Our hypothesis-driven, exploratory study design may serve as an exemplary roadmap for a standardized, reproducible investigation of personalized antidepressant therapy in an inpatient setting with focus on heart comorbidities in future multicentre studies.
Collapse
Affiliation(s)
- Katharina Lichter
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Catherina Klüpfel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
- Department of Clinical Research and Epidemiology, Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Saskia Stonawski
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
- Department of Clinical Research and Epidemiology, Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Leif Hommers
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
- Department of Clinical Research and Epidemiology, Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Manuel Blickle
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Department of Clinical Research and Epidemiology, Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Carolin Burschka
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Felix Das
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Marlene Heißler
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Anna Hellmuth
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Jaqueline Helmel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Leonie Kranemann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Karin Lechner
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Dominik Lehrieder
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Amelie Sauter
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany
| | - Vithusha Vijayakumar
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Michael von Broen
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Carolin Weiß
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Caroline Morbach
- Department of Clinical Research and Epidemiology, Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
- Department of Medicine I, University Hospital of Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
| | - Stefan Störk
- Department of Clinical Research and Epidemiology, Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
- Department of Medicine I, University Hospital of Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
| | - Götz Gelbrich
- Department of Clinical Research and Epidemiology, Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
- Clinical Trial Center, University Hospital of Würzburg, Würzburg, Germany
| | - Peter U Heuschmann
- Department of Clinical Research and Epidemiology, Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
- Clinical Trial Center, University Hospital of Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Clinical Research and Epidemiology, Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
- Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
| | - György A Homola
- Department of Neuroradiology, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Mirko Pham
- Department of Neuroradiology, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Andreas Menke
- Department of Psychosomatic Medicine and Psychotherapy, Medical Park Chiemseeblick, Rathausstr. 25, 83233, Bernau am Chiemsee, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nußbaumstr. 7, 80336, Munich, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
| |
Collapse
|
14
|
Ben David G, Amir Y, Salalha R, Sharvit L, Richter-Levin G, Atzmon G. Can Epigenetics Predict Drug Efficiency in Mental Disorders? Cells 2023; 12:1173. [PMID: 37190082 PMCID: PMC10136455 DOI: 10.3390/cells12081173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Psychiatric disorders affect millions of individuals and their families worldwide, and the costs to society are substantial and are expected to rise due to a lack of effective treatments. Personalized medicine-customized treatment tailored to the individual-offers a solution. Although most mental diseases are influenced by genetic and environmental factors, finding genetic biomarkers that predict treatment efficacy has been challenging. This review highlights the potential of epigenetics as a tool for predicting treatment efficacy and personalizing medicine for psychiatric disorders. We examine previous studies that have attempted to predict treatment efficacy through epigenetics, provide an experimental model, and note the potential challenges at each stage. While the field is still in its infancy, epigenetics holds promise as a predictive tool by examining individual patients' epigenetic profiles in conjunction with other indicators. However, further research is needed, including additional studies, replication, validation, and application beyond clinical settings.
Collapse
Affiliation(s)
- Gil Ben David
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (G.B.D.); (R.S.)
| | - Yam Amir
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (Y.A.)
| | - Randa Salalha
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (G.B.D.); (R.S.)
| | - Lital Sharvit
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (Y.A.)
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (G.B.D.); (R.S.)
- Department of Psychology, Faculty of Social Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel
- Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel
| | - Gil Atzmon
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (Y.A.)
| |
Collapse
|
15
|
The associations between DNA methylation and depression: A systematic review and meta-analysis. J Affect Disord 2023; 327:439-450. [PMID: 36717033 DOI: 10.1016/j.jad.2023.01.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Growing evidence suggests that epigenetic modification is vital in biological processes of depression. Findings from studies exploring the associations between DNA methylation and depression have been inconsistent. METHODS A systematical search of EMBASE, PubMed, Web of Science, and PsycINFO databases was conducted to include studies focusing on the associations between DNA methylation and depression (up to November 1st 2021) according to PRISMA guidelines with registration in PROSPERO (CRD42021288664). RESULTS A total of 47 studies met inclusion criteria and 31 studies were included in the meta-analysis. This meta-analysis found that genes hypermethylation, including BDNF (OR: 1.15, 95%CI: 1.01-1.32, I2 = 90 %), and NR3C1 (OR: 1.43, 95%CI: 1.09-1.87, I2 = 88 %) was associated with increased risk of depression. Significant association of SLC6A4 hypermethylation with depression was only found in the subgroup of using original data (OR: 1.09, 95%CI: 1.01-1.19, I2 = 52 %). BDNF hypermethylation could increase the risk of depression only in the Asian population (OR: 1.18, 95%CI: 1.01-1.40, I2 = 91 %), and significant associations of NR3C1 hypermethylation with depression were found in the group for depressive symptoms (OR: 1.34, 95%CI: 1.08-1.67, I2 = 85 %), but not for depressive disorder (OR: 1.89, 95%CI: 0.54-6.55, I2 = 94 %). LIMITATIONS More studies are needed to explore the factors that might influence the estimates owing to the contextual heterogeneity of the pooling of included studies. CONCLUSIONS It is noted that DNA hypermethylation, namely BDNF and NR3C1, is associated with increased risk of depression. The findings in this study could provide some material evidence for preventing and diagnosing of depression.
Collapse
|
16
|
He Q, Lian C, Peng S, Chen H, Kang Q, Chen J. Hypermethylation of the serotonin transporter gene and paternal parenting styles in untreated anorexia nervosa patients: A pilot study. Heliyon 2023; 9:e12635. [PMID: 36747546 PMCID: PMC9898629 DOI: 10.1016/j.heliyon.2022.e12635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/28/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Purpose It has been reported that serotonergic systems and parenting styles are involved in the pathogenesis of anorexia nervosa (AN). The present study made attempts to examine the DNA methylation profiles in the promoter region of serotonin transporter (5-HTT) encoding gene SLC6A4, and explore the association between the methylation level and severity of symptoms, 5-HTT linked polymorphic region (5-HTTLPR) genotypes and parenting styles in untreated Chinese Han AN patients. Methods Ninety-one untreated female AN patients (ANs) and eighty-seven matched healthy controls (HCs) were analyzed for DNA methylation status at CpG islands in the promoter region of SLC6A4 using MassARRY EpiTYPER, and genotypes of 5-HTTLPR using PCR-RFLP. The severity of eating disorder (ED) symptoms was evaluated by body mass index (BMI) and Questionnaire Version of the Eating Disorders Examination (EDE-Q 6.0), and part of participants were assessed parenting styles using the short Chinese Egna Minnen av Barndoms Uppfostra (s-EMBU-C). Results ANs had greater methylation levels at CpG26.27.28, CpG 31.32, and CpG 37 than HCs (P = 0.039, 0.042, 0.018 respectively). A positive association of methylation level at CpG26.27.28 with ED symptoms detected by EDEQ-6.0 was discovered in AN group (r = 0.216, P = 0.047). Methylation level at CpG26.27.28 was showed to be or tend to be positively correlated with the parenting styles of paternal rejection (r = 0.425, P = 0.038) and paternal overprotection (r = 0.362, P = 0.062) in ANs. No significant differences were found in SLC6A4 promoter region methylation levels among 5-HTTLPR genotypes in our samples (P > 0.05) and no interaction effect between 5-HTTLPR genotypes and parenting styles on SLC6A4 promoter region methylation was observed (P > 0.05). Conclusions This study suggested that hypermethylation of SLC6A4 promoter region may be implicated in the pathological mechanisms of untreated Chinese Han female ANs, which is possibly associated with poor parenting styles. This finding may provide a direction for the epigenetic and family treatments for ANs and further investigation with larger samples is warranted.
Collapse
|
17
|
Denoulet M, Brulé M, Anquez F, Vincent A, Schnipper J, Adriaenssens E, Toillon RA, Le Bourhis X, Lagadec C. ABSP: an automated R tool to efficiently analyze region-specific CpG methylation from bisulfite sequencing PCR. Bioinformatics 2023; 39:6984714. [PMID: 36629453 PMCID: PMC9846423 DOI: 10.1093/bioinformatics/btad008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/21/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
MOTIVATION Nowadays, epigenetic gene regulations are studied in each part of the biology, from embryonic development to diseases such as cancers and neurodegenerative disorders. Currently, to quantify and compare CpG methylation levels of a specific region of interest, the most accessible technique is the bisulfite sequencing PCR (BSP). However, no existing user-friendly tool is able to analyze data from all approaches of BSP. Therefore, the most convenient way to process results from the direct sequencing of PCR products (direct-BSP) is to manually analyze the chromatogram traces, which is a repetitive and prone to error task. RESULTS Here, we implement a new R-based tool, called ABSP for analysis of bisulfite sequencing PCR, providing a complete analytic process of both direct-BSP and cloning-BSP data. It uses the raw sequencing trace files (.ab1) as input to compute and compare CpG methylation percentages. It is fully automated and includes a user-friendly interface as a built-in R shiny app, quality control steps and generates publication-ready graphics. AVAILABILITY AND IMPLEMENTATION The ABSP tool and associated data are available on GitHub at https://github.com/ABSP-methylation-tool/ABSP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Marie Denoulet
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France,Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille F-59000, France
| | - Mathilde Brulé
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France,Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille F-59000, France
| | - François Anquez
- CNRS, UMR 8523 - PhLAM—Physique des Lasers Atomes et Molécules, University of Lille, Lille F-59000, France
| | - Audrey Vincent
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Julie Schnipper
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne, Amiens 80000, France
| | - Eric Adriaenssens
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Robert-Alain Toillon
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Xuefen Le Bourhis
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | | |
Collapse
|
18
|
Tsermpini EE, Serretti A, Dolžan V. Precision Medicine in Antidepressants Treatment. Handb Exp Pharmacol 2023; 280:131-186. [PMID: 37195310 DOI: 10.1007/164_2023_654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Precision medicine uses innovative approaches to improve disease prevention and treatment outcomes by taking into account people's genetic backgrounds, environments, and lifestyles. Treatment of depression is particularly challenging, given that 30-50% of patients do not respond adequately to antidepressants, while those who respond may experience unpleasant adverse drug reactions (ADRs) that decrease their quality of life and compliance. This chapter aims to present the available scientific data that focus on the impact of genetic variants on the efficacy and toxicity of antidepressants. We compiled data from candidate gene and genome-wide association studies that investigated associations between pharmacodynamic and pharmacokinetic genes and response to antidepressants regarding symptom improvement and ADRs. We also summarized the existing pharmacogenetic-based treatment guidelines for antidepressants, used to guide the selection of the right antidepressant and its dose based on the patient's genetic profile, aiming to achieve maximum efficacy and minimum toxicity. Finally, we reviewed the clinical implementation of pharmacogenomics studies focusing on patients on antidepressants. The available data demonstrate that precision medicine can increase the efficacy of antidepressants and reduce the occurrence of ADRs and ultimately improve patients' quality of life.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
19
|
The role of DNA methylation in progression of neurological disorders and neurodegenerative diseases as well as the prospect of using DNA methylation inhibitors as therapeutic agents for such disorders. IBRO Neurosci Rep 2022; 14:28-37. [PMID: 36590248 PMCID: PMC9794904 DOI: 10.1016/j.ibneur.2022.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide studies related to neurological disorders and neurodegenerative diseases have pointed to the role of epigenetic changes such as DNA methylation, histone modification, and noncoding RNAs. DNA methylation machinery controls the dynamic regulation of methylation patterns in discrete brain regions. Objective This review aims to describe the role of DNA methylation in inhibiting and progressing neurological and neurodegenerative disorders and therapeutic approaches. Methods A Systematic search of PubMed, Web of Science, and Cochrane Library was conducted for all qualified studies from 2000 to 2022. Results For the current need of time, we have focused on the DNA methylation role in neurological and neurodegenerative diseases and the expression of genes involved in neurodegeneration such as Alzheimer's, Depression, and Rett Syndrome. Finally, it appears that the various epigenetic changes do not occur separately and that DNA methylation and histone modification changes occur side by side and affect each other. We focused on the role of modification of DNA methylation in several genes associated with depression (NR3C1, NR3C2, CRHR1, SLC6A4, BDNF, and FKBP5), Rett syndrome (MECP2), Alzheimer's, depression (APP, BACE1, BIN1 or ANK1) and Parkinson's disease (SNCA), as well as the co-occurring modifications to histones and expression of non-coding RNAs. Understanding these epigenetic changes and their interactions will lead to better treatment strategies. Conclusion This review captures the state of understanding of the epigenetics of neurological and neurodegenerative diseases. With new epigenetic mechanisms and targets undoubtedly on the horizon, pharmacological modulation and regulation of epigenetic processes in the brain holds great promise for therapy.
Collapse
|
20
|
Mohammadi S, Beh-Pajooh A, Ahmadimanesh M, Amini M, Ghazi-Khansari M, Moallem SA, Hosseini R, Nourian YH, Ghahremani MH. Evaluation of DNA methylation in BDNF, SLC6A4, NR3C1 and FKBP5 before and after treatment with selective serotonin-reuptake inhibitor in major depressive disorder. Epigenomics 2022; 14:1269-1280. [DOI: 10.2217/epi-2022-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aim: To identify the DNA methylation status of related genes in major depressive disorder following selective serotonin-reuptake inhibitor treatment. Materials & methods: 45 patients with major depressive disorder and 45 healthy volunteers were considered experimental and control groups, respectively. High-resolution melting real-time PCR was implemented to evaluate DNA methylation. Results: After 100 days of selective serotonin-reuptake inhibitor treatment, methylation of promoter CpG sites of BDNF, NR3C1, FKBP5 and SLC6A4 was significantly reduced. Compared with before treatment, patients' Hamilton Depression Rating Scale scores were significantly reduced after selective serotonin-reuptake inhibitor treatment (p ≤ 0.0001). Conclusion: Based on the proven effect of antidepressants on DNA methylation and gene expression, these medications can improve the treatment process and reduce depression scores after treatment.
Collapse
Affiliation(s)
- Saeid Mohammadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Beh-Pajooh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadimanesh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Rohollah Hosseini
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Hasani Nourian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Paoli C, Misztak P, Mazzini G, Musazzi L. DNA Methylation in Depression and Depressive-Like Phenotype: Biomarker or Target of Pharmacological Intervention? Curr Neuropharmacol 2022; 20:2267-2291. [PMID: 35105292 PMCID: PMC9890294 DOI: 10.2174/1570159x20666220201084536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating psychiatric disorder, the third leading global cause of disability. Regarding aetiopathogenetic mechanisms involved in the onset of depressive disorders, the interaction between genetic vulnerability traits and environmental factors is believed to play a major role. Although much is still to be elucidated about the mechanisms through which the environment can interact with genetic background shaping the disease risk, there is a general agreement about a key role of epigenetic marking. In this narrative review, we focused on the association between changes in DNA methylation patterns and MDD or depressive-like phenotype in animal models, as well as mechanisms of response to antidepressant drugs. We discussed studies presenting DNA methylation changes at specific genes of interest and profiling analyses in both patients and animal models of depression. Overall, we collected evidence showing that DNA methylation could not only be considered as a promising epigenetic biomarker of pathology but could also help in predicting antidepressant treatment efficacy. Finally, we discussed the hypothesis that specific changes in DNA methylation signature could play a role in aetiopathogenetic processes as well as in the induction of antidepressant effect.
Collapse
Affiliation(s)
- Caterina Paoli
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- School of Pharmacy, Pharmacy Unit, University of Camerino, 62032 Camerino, Italy
| | - Paulina Misztak
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giulia Mazzini
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Laura Musazzi
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
22
|
Maternal and infant NR3C1 and SLC6A4 epigenetic signatures of the COVID-19 pandemic lockdown: when timing matters. Transl Psychiatry 2022; 12:386. [PMID: 36114180 PMCID: PMC9481531 DOI: 10.1038/s41398-022-02160-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
Stress exposure during pregnancy is critically linked with maternal mental health and child development. The effects might involve altered patterns of DNA methylation in specific stress-related genes (i.e., glucocorticoid receptor gene, NR3C1, and serotonin transporter gene, SLC6A4) and might be moderated by the gestational timing of stress exposure. In this study, we report on NR3C1 and SLC6A4 methylation status in Italian mothers and infants who were exposed to the COVID-19 pandemic lockdown during different trimesters of pregnancy. From May 2020 to February 2021, 283 mother-infant dyads were enrolled at delivery. Within 24 h from delivery, buccal cells were collected to assess NR3C1 (44 CpG sites) and SLC6A4 (13 CpG sites) methylation status. Principal component (PC) analyses were used to reduce methylation data dimension to one PC per maternal and infant gene methylation. Mother-infant dyads were split into three groups based on the pregnancy trimester (first, second, third), during which they were exposed to the COVID-19 lockdown. Mothers and infants who were exposed to the lockdown during the first trimester of pregnancy had lower NR3C1 and SLC6A4 methylation when compared to counterparts exposed during the second or third trimesters. The effect remained significant after controlling for confounders. Women who were pregnant during the pandemic and their infants might present altered epigenetic biomarkers of stress-related genes. As these epigenetic marks have been previously linked with a heightened risk of maternal psychiatric problems and less-than-optimal child development, mothers and infants should be adequately monitored for psychological health during and after the pandemic.
Collapse
|
23
|
Gao C, Xu Z, Tan T, Chen Z, Shen T, Chen L, Tan H, Chen B, Zhang Z, Yuan Y. Combination of spontaneous regional brain activity and HTR1A/1B DNA methylation to predict early responses to antidepressant treatments in MDD. J Affect Disord 2022; 302:249-257. [PMID: 35092755 DOI: 10.1016/j.jad.2022.01.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Antidepressant medications are suggested as the first-line treatment in patients with major depressive disorder (MDD). However, the drug therapy outcomes vary from person to person. The functional activity of the brain and DNA methylation levels correlate with the antidepressant efficacy. To predict the early antidepressant responses in MDD and establish the prediction framework, we aimed to apply multidimensional data based on the resting-state activity of the brain and HTR1A/1B methylation. METHODS The values of Amplitude of Low-Frequency Fluctuations (ALFF) and regional homogeneity (ReHo) were measured as variables in 116 brain regions along with 181 CpG sites in the promoter region of HTR1A/1B and 11 clinical characteristics. After performing the feature reduction step using the least absolute shrinkage and selection operator (LASSO) method, the selected variables were put into Support Vector Machines (SVM), Random Forest (RF), Naïve Bayes (NB), and logistic regression (LR), consecutively, to construct the prediction models. The models' performance was evaluated by the Leave-One-Out Cross-Validation. RESULTS The LR model composed of the selected multidimensional features reached a maximum performance of 78.57% accuracy and 0.8340 area under the ROC curve (AUC). The prediction accuracies based on multidimensional datasets were found to be higher than those obtained from the data based only on fMRI or methylation. LIMITATIONS A relatively small sample size potentially restricted the usage of our prediction framework in clinical applications. CONCLUSION Our study revealed that combining the data of brain imaging and DNA methylation could provide a complementary effect in predicting early-stage antidepressant outcomes.
Collapse
Affiliation(s)
- Chenjie Gao
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Tingting Tan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zimu Chen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tian Shen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Department of Psychiatric Rehabilitation, Wuxi Mental Health Center, Nanjing Medical University, Wuxi 214123, China
| | - Lei Chen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Department of Psychology and Psychiatry, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210018, China
| | - Haiping Tan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Zhijun Zhang
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
24
|
Afridi R, Suk K. Neuroinflammatory Basis of Depression: Learning From Experimental Models. Front Cell Neurosci 2021; 15:691067. [PMID: 34276311 PMCID: PMC8283257 DOI: 10.3389/fncel.2021.691067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
The neuroinflammatory basis of depression encompasses the detrimental role of otherwise supportive non-neuronal cells and neuroinflammation in hampering neuronal function, leading to depressive behavior. Animals subjected to different stress paradigms show glial cell activation and a surge in proinflammatory cytokines in various brain regions. The concept of sterile inflammation observed in animal models of depression has intrigued many researchers to determine the possible triggers of central immune cell activation. Notably, microglial activation and subsequent phenotypic polarization in depression have been strongly advocated by the wealth of recent preclinical studies; however, findings from human studies have shown contradictory results. Despite intensive investigation, many research gaps still exist to elucidate the molecular mechanisms of neuroinflammatory cascades underlying the pathophysiology of depression. In this mini-review, recent progress in understanding neuroinflammatory mechanisms in light of experimental models of depression will be thoroughly discussed. The challenges of mirroring depression in animal and in vitro models will also be highlighted. Furthermore, prospects of targeting neuroinflammation to treat depressive disorder will be covered.
Collapse
Affiliation(s)
- Ruqayya Afridi
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
25
|
Schiele MA, Reif A, Lin J, Alpers GW, Andersson E, Andersson G, Arolt V, Bergström J, Carlbring P, Eley TC, Esquivel G, Furmark T, Gerlach AL, Hamm A, Helbig-Lang S, Hudson JL, Lang T, Lester KJ, Lindefors N, Lonsdorf TB, Pauli P, Richter J, Rief W, Roberts S, Rück C, Schruers KRJ, Thiel C, Wittchen HU, Domschke K, Weber H, Lueken U. Therapygenetic effects of 5-HTTLPR on cognitive-behavioral therapy in anxiety disorders: A meta-analysis. Eur Neuropsychopharmacol 2021; 44:105-120. [PMID: 33483252 DOI: 10.1016/j.euroneuro.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 01/10/2021] [Indexed: 12/25/2022]
Abstract
There is a recurring debate on the role of the serotonin transporter gene linked polymorphic region (5-HTTLPR) in the moderation of response to cognitive behavioral therapy (CBT) in anxiety disorders. Results, however, are still inconclusive. We here aim to perform a meta-analysis on the role of 5-HTTLPR in the moderation of CBT outcome in anxiety disorders. We investigated both categorical (symptom reduction of at least 50%) and dimensional outcomes from baseline to post-treatment and follow-up. Original data were obtained from ten independent samples (including three unpublished samples) with a total of 2,195 patients with primary anxiety disorder. No significant effects of 5-HTTLPR genotype on categorical or dimensional outcomes at post and follow-up were detected. We conclude that current evidence does not support the hypothesis of 5-HTTLPR as a moderator of treatment outcome for CBT in anxiety disorders. Future research should address whether other factors such as long-term changes or epigenetic processes may explain further variance in these complex gene-environment interactions and molecular-genetic pathways that may confer behavioral change following psychotherapy.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Jiaxi Lin
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg W Alpers
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Evelyn Andersson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gerhard Andersson
- Department of Behavioural Sciences and Learning, Division of Psychology, Linköping University, Linköping, Sweden
| | - Volker Arolt
- Institute of Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Jan Bergström
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Per Carlbring
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Thalia C Eley
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Gabriel Esquivel
- School for Mental Health and Neuroscience, Maastricht University, The Netherlands and Mondriaan Mental Health Center, Maastricht, The Netherlands
| | - Tomas Furmark
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Alexander L Gerlach
- Department of Clinical Psychology and Psychotherapy, University of Cologne, Cologne, Germany
| | - Alfons Hamm
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Sylvia Helbig-Lang
- Department of Clinical Psychology and Psychotherapy, University of Hamburg, Hamburg, Germany
| | - Jennifer L Hudson
- Department of Psychology, Centre for Emotional Health, Macquarie University, Sydney, NSW, Australia
| | - Thomas Lang
- Christoph-Dornier-Foundation for Clinical Psychology, Bremen, Germany; Department of Psychology and Methods, Jacobs University Bremen, Germany
| | - Kathryn J Lester
- School of Psychology, University of Sussex, Brighton, United Kingdom
| | - Nils Lindefors
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Region Stockholm, Sweden
| | - Tina B Lonsdorf
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), and Center of Mental Health, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jan Richter
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Winfried Rief
- Division of Clinical Psychology and Psychotherapy, Department of Psychology, Philipps University Marburg, Marburg, Germany
| | - Susanna Roberts
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Region Stockholm, Sweden
| | - Koen R J Schruers
- School for Mental Health and Neuroscience, Maastricht University, The Netherlands and Mondriaan Mental Health Center, Maastricht, The Netherlands
| | - Christiane Thiel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Ulrich Wittchen
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Germany
| | - Heike Weber
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany; Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany
| | - Ulrike Lueken
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
26
|
The Importance of Epigenetics in Diagnostics and Treatment of Major Depressive Disorder. J Pers Med 2021; 11:jpm11030167. [PMID: 33804455 PMCID: PMC7999864 DOI: 10.3390/jpm11030167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies imply that there is a tight association between epigenetics and a molecular mechanism of major depressive disorder (MDD). Epigenetic modifications, i.e., DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA), are able to influence the severity of the disease and the outcome of the therapy. This article summarizes the most recent literature data on this topic, i.e., usage of histone deacetylases as therapeutic agents with an antidepressant effect and miRNAs or lncRNAs as markers of depression. Due to the noteworthy potential of the role of epigenetics in MDD diagnostics and therapy, we have gathered the most relevant data in this area.
Collapse
|