1
|
Valizadeh A, Veenhuis RT, Bradley BA, Xu K. Transcriptomic Alterations Induced by Tetrahydrocannabinol in SIV/HIV Infection: A Systematic Review. Int J Mol Sci 2025; 26:2598. [PMID: 40141240 PMCID: PMC11942185 DOI: 10.3390/ijms26062598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Given the high prevalence of cannabis use among people with HIV (PWH) and its potential to modulate immune responses and reduce inflammation, this systematic review examines preclinical evidence on how tetrahydrocannabinol (THC), a key compound in cannabis, affects gene and micro-RNA expression in simian immunodeficiency virus (SIV)-infected macaques and HIV-infected human cells. Through a comprehensive search, 19 studies were identified, primarily involving SIV-infected macaques, with a pooled sample size of 176, though methodological quality varied across the studies. Pathway analysis of differentially expressed genes (DEGs) and miRNAs associated with THC revealed enrichment in pathways related to inflammation, epithelial cell proliferation, and adhesion. Notably, some DEGs were targets of the differentially expressed miRNAs, suggesting that epigenetic regulation may contribute to THC's effects on gene function. These findings indicate that THC may help mitigate chronic immune activation in HIV infection by altering gene and miRNA expression, suggesting its potential immunomodulatory role. However, the evidence is constrained by small sample sizes and inconsistencies across studies. Further research employing advanced methodologies and larger cohorts is essential to confirm THC's potential as a complementary therapy for PWH and fully elucidate the underlying mechanisms, which could inform targeted interventions to harness its immunomodulatory effects.
Collapse
Affiliation(s)
- Amir Valizadeh
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; (A.V.); (B.A.B.)
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Rebecca T. Veenhuis
- Department of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Brooklyn A. Bradley
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; (A.V.); (B.A.B.)
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; (A.V.); (B.A.B.)
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
2
|
Jha NA, Ayoub SM, Flesher MM, Morton K, Sikkink M, Guglielmo GD, Khokhar JY, Minassian A, Brody AL, Young JW. Acute nicotine vapor attenuates sensorimotor gating deficits in HIV-1 transgenic rats. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06761-7. [PMID: 39994054 DOI: 10.1007/s00213-025-06761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
RATIONALE Despite improved life expectancy of people with HIV (PWH), HIV-associated neurocognitive impairment (NCI) persists, alongside deficits in sensorimotor gating and neuroinflammation. PWH exhibit high smoking rates, possibly due to neuroprotective, anti-inflammatory, and cognitive-enhancing effects of nicotine, suggesting potential self-medication. OBJECTIVES Here, we tested the effects of acute nicotine vapor exposure on translatable measures of sensorimotor gating and exploratory behavior in the HIV-1 transgenic (HIV-1Tg) rat model of HIV. METHODS Male and female HIV-1Tg (n = 28) and F344 control rats (n = 29) were exposed to acute nicotine or vehicle vapor. Sensorimotor gating was assessed using prepulse inhibition (PPI) of the acoustic startle response, and exploratory behavior was evaluated using the behavioral pattern monitor (BPM). RESULTS Vehicle-treated HIV-1Tg rats exhibited PPI deficits at low prepulse intensities compared to F344 controls, as seen previously. No PPI deficits were observed in nicotine-treated HIV-1Tg rats, however. Nicotine vapor increased locomotor activity across genotypes. Cotinine analyses confirmed comparable levels of the primary metabolite of nicotine across genotypes. CONCLUSIONS Previous findings of PPI deficits in HIV-1Tg rats were replicated and, importantly, attenuated by acute nicotine vapor administration. Evidence for similar cotinine levels suggest a nicotine-specific effect in HIV-1Tg rats. Therefore, acute nicotine administration may be beneficial for attenuating sensorimotor deficits in PWH. Future studies should determine the long-term effects of nicotine vapor on similar HIV/NCI-relevant behaviors.
Collapse
Affiliation(s)
- Neal A Jha
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Samantha M Ayoub
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - M Melissa Flesher
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Kathleen Morton
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Megan Sikkink
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N61 3K7, Canada
| | - Arpi Minassian
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Center of Excellence for Stress and Mental Health, VA , San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, 92161, USA
| | - Arthur L Brody
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Psychiatry, Research Service, UCSD, VA San Diego Healthcare System, 3350 La Jolla Village Drive (116A), San Diego, CA, 92161, USA
| | - Jared W Young
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Department of Psychiatry, Research Service, UCSD, VA San Diego Healthcare System, 3350 La Jolla Village Drive (116A), San Diego, CA, 92161, USA.
| |
Collapse
|
3
|
Jha NA, Ayoub SM, Flesher MM, Morton K, Sikkink M, de Guglielmo G, Khokhar JY, Minassian A, Brody AL, Young JW. Acute nicotine vapor normalizes sensorimotor gating and reduces locomotor activity deficits in HIV-1 transgenic rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599641. [PMID: 38948796 PMCID: PMC11212989 DOI: 10.1101/2024.06.18.599641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Rationale Despite improved life expectancy of people with HIV (PWH), HIV-associated neurocognitive impairment (NCI) persists, alongside deficits in sensorimotor gating and neuroinflammation. PWH exhibit high smoking rates, possibly due to neuroprotective, anti-inflammatory, and cognitive-enhancing effects of nicotine, suggesting potential self-medication. Objectives Here, we tested the effects of acute nicotine vapor exposure on translatable measures of sensorimotor gating and exploratory behavior in the HIV-1 transgenic (HIV-1Tg) rat model of HIV. Methods Male and female HIV-1Tg and F344 control rats (n=57) were exposed to acute nicotine or vehicle vapor. Sensorimotor gating was assessed using prepulse inhibition (PPI) of the acoustic startle response, and exploratory behavior was evaluated using the behavioral pattern monitor (BPM). Results Vehicle-treated HIV-1Tg rats exhibited PPI deficits at low prepulse intensities compared to F344 controls, as seen previously. No PPI deficits were observed in nicotine-treated HIV1-Tg rats, however. HIV-1Tg rats were hypoactive in the BPM relative to controls, whilst nicotine vapor increased activity and exploratory behavior across genotypes. Cotinine analyses confirmed comparable levels of the primary metabolite of nicotine across genotypes. Conclusions Previous findings of PPI deficits in HIV-1Tg rats were replicated and, importantly, attenuated by acute nicotine vapor. Evidence for similar cotinine levels suggest a nicotine-specific effect in HIV-1Tg rats. HIV-1Tg rats had reduced exploratory behavior compared to controls, attenuated by acute nicotine vapor. Therefore, acute nicotine may be beneficial for remediating sensorimotor and locomotor activity deficits in PWH. Future studies should determine the long-term effects of nicotine vapor on similar HIV/NCI-relevant behaviors.
Collapse
Affiliation(s)
- Neal A. Jha
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Samantha M. Ayoub
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - M. Melissa Flesher
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kathleen Morton
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Megan Sikkink
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jibran Y. Khokhar
- Department of Anatomy and Cell Biology, University of Western Ontario 1151 Richmond Street, London, ON N61 3K7, Canada
| | - Arpi Minassian
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Arthur L. Brody
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
- Research Service, VA San Diego Healthcare System 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Jared W. Young
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
- Research Service, VA San Diego Healthcare System 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
4
|
Lamanna-Rama N, Romero-Miguel D, Casquero-Veiga M, MacDowell KS, Santa-Marta C, Torres-Sánchez S, Berrocoso E, Leza JC, Desco M, Soto-Montenegro ML. THC improves behavioural schizophrenia-like deficits that CBD fails to overcome: a comprehensive multilevel approach using the Poly I:C maternal immune activation. Psychiatry Res 2024; 331:115643. [PMID: 38064909 DOI: 10.1016/j.psychres.2023.115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 01/02/2024]
Abstract
Prenatal infections and cannabis use during adolescence are well-recognized risk factors for schizophrenia. As inflammation and oxidative stress (OS) contribute to this disorder, anti-inflammatory drugs have been proposed as potential therapies. This study aimed to evaluate the association between delta-9-tetrahydrocannabinol (THC) and schizophrenia-like abnormalities in a maternal immune activation (MIA) model. Additionally, we assessed the preventive effect of cannabidiol (CBD), a non-psychotropic/anti-inflammatory cannabinoid. THC and/or CBD were administered to Saline- and MIA-offspring during periadolescence. At adulthood, THC-exposed MIA-offspring showed significant improvements in sensorimotor gating deficits. Structural and metabolic brain changes were evaluated by magnetic resonance imaging, revealing cortical shrinkage in Saline- and enlargement in MIA-offspring after THC-exposure. Additionally, MIA-offspring displayed enlarged ventricles and decreased hippocampus, which were partially reverted by both cannabinoids. CBD prevented THC-induced reduction in the corpus callosum, despite affecting white matter structure. Post-mortem studies revealed detrimental effects of THC, including increased inflammation and oxidative stress. CBD partially reverted these pro-inflammatory alterations and modulated THC's effects on the endocannabinoid system. In conclusion, contrary to expectations, THC exhibited greater behavioural and morphometric benefits, despite promoting a pro-inflammatory state that CBD partially reverted. Further research is needed to elucidate the underlying mechanisms involved in the observed benefits of THC.
Collapse
Affiliation(s)
- Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.; Departamento de Bioingeniería, Universidad Carlos III de Madrid, Leganés (Madrid) 28911, Spain
| | | | | | - Karina S MacDowell
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, 28040 - Madrid, Spain
| | | | - Sonia Torres-Sánchez
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Esther Berrocoso
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Juan C Leza
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, 28040 - Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.; Departamento de Bioingeniería, Universidad Carlos III de Madrid, Leganés (Madrid) 28911, Spain; CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.; CIBER de Salud Mental (CIBERSAM), Madrid, Spain; High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain.
| |
Collapse
|
5
|
Yadav-Samudrala BJ, Gorman BL, Dodson H, Ramineni S, Wallace ED, Peace MR, Poklis JL, Jiang W, Fitting S. Effects of acute Δ 9-tetrahydrocannabinol on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Brain Res 2024; 1822:148638. [PMID: 37858856 PMCID: PMC10873064 DOI: 10.1016/j.brainres.2023.148638] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Cannabis use is highly prevalent especially among people living with HIV (PLWH). Activation of the anti-inflammatory and neuroprotective endocannabinoid system by phytocannabinoids, i.e. Δ9-tetrahydrocannabinol (THC), has been proposed to reduce HIV symptoms. However, THC's effects on HIV-related memory deficits are unclear. Using HIV-1 Tat transgenic mice, the current study investigates acute THC effects on various behavioral outcomes and the endocannabinoid system. For the rodent tetrad model, THC doses (1, 3, 10 mg/kg) induced known antinociceptive effects, with Tat induction increasing antinociceptive THC effects at 3 and 10 mg/kg doses. Only minor or no effects were noted for acute THC on body temperature, locomotor activity, and coordination. Increased anxiety-like behavior was found for females compared to males, but acute THC had no effect on anxiety. Object recognition memory was diminished by acute THC in Tat(-) females but not Tat(+) females, without affecting males. The endocannabinoid system and related lipids were not affected by acute THC, except for THC-induced decreases in CB1R protein expression levels in the spinal cord of Tat(-) mice. Female sex and Tat induction was associated with elevated 2-AG, AEA, AA, CB1R, CB2R, FAAH and/or MAGL expression in various brain regions. Further, AEA levels in the prefrontal cortex of Tat(+) females were negatively associated with object recognition memory. Overall, findings indicate that acute THC exerts differential effects on antinociception and memory, dependent on sex and HIV Tat expression, potentially in relation to an altered endocannabinoid system, which may be of relevance in view of potential cannabis-based treatment options for PLWH.
Collapse
Affiliation(s)
- Barkha J Yadav-Samudrala
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin L Gorman
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey Dodson
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shreya Ramineni
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - E Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michelle R Peace
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Chu L, Shu Z, Gu X, Wu Y, Yang J, Deng H. The Endocannabinoid System as a Potential Therapeutic Target for HIV-1-Associated Neurocognitive Disorder. Cannabis Cannabinoid Res 2023. [PMID: 36745405 DOI: 10.1089/can.2022.0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Despite the successful introduction of combined antiretroviral therapy, the prevalence of mild to moderate forms of HIV-associated neurocognitive disorders (HAND) remains high. It has been demonstrated that neuronal injury caused by HIV is excitotoxic and inflammatory, and it correlates with neurocognitive decline in HAND. Endocannabinoid system (ECS) protects the body from excitotoxicity and neuroinflammation on demand and presents a promising therapeutic target for treating HAND. Here, we firstly discuss the potential pathogenesis of HAND. We secondly discuss the structural and functional changes in the ECS that are currently known among HAND patients. We thirdly discuss current clinical and preclinical findings concerning the neuroprotective and anti-inflammatory properties of the ECS among HAND patients. Fourth, we will discuss the interactions between the ECS and neuroendocrine systems, including the hypothalamic-pituitary-adrenocortical (HPA) and hypothalamic-pituitary-gonadal (HPG) axes under the HAND conditions. Materials and Methods: We have carried out a review of the literature using PubMed to summarize the current state of knowledge on the association between ECS and HAND. Results: The ECS may be ideally suited for modulation of HAND pathophysiology. Direct activation of presynaptic cannabinoid receptor 1 or reduction of cannabinoid metabolism attenuates HAND excitotoxicity. Chronic neuroinflammation associated with HAND can be reduced by activating cannabinoid receptor 2 on immune cells. The sensitivity of the ECS to HIV may be enhanced by increased cannabinoid receptor expression in HAND. In addition, indirect regulation of the ECS through modulation of hormone-related receptors may be a potential strategy to influence the ECS and also alleviate the progression of HAND due to the reciprocal inhibition of the ECS by the HPA and HPG axes. Conclusions: Taken together, targeting the ECS may be a promising strategy to alleviate the inflammation and neurodegeneration caused by HIV-1 infection. Further studies are required to clarify the role of endocannabinoid signaling in HIV neurotoxicity. Strategies promoting endocannabinoid signaling may slow down cognitive decline of HAND are proposed.
Collapse
Affiliation(s)
- Liuxi Chu
- Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China.,Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Zheng Shu
- Clinical Nutrition Department, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yan Wu
- Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China.,Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Jin Yang
- Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China.,Department of Child and Adolescent Hygienics, School of Public Health, Southeast University, Nanjing, China
| | - Huihua Deng
- Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China.,Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Nass SR, Ohene-Nyako M, Hahn YK, Knapp PE, Hauser KF. Neurodegeneration Within the Amygdala Is Differentially Induced by Opioid and HIV-1 Tat Exposure. Front Neurosci 2022; 16:804774. [PMID: 35600626 PMCID: PMC9115100 DOI: 10.3389/fnins.2022.804774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Opioid use disorder (OUD) is a critical problem that contributes to the spread of HIV and may intrinsically worsen neuroHIV. Despite the advent of combined antiretroviral therapies (cART), about half of persons infected with HIV (PWH) experience cognitive and emotional deficits that can be exacerbated by opioid abuse. HIV-1 Tat is expressed in the central nervous system (CNS) of PWH on cART and is thought to contribute to neuroHIV. The amygdala regulates emotion and memories associated with fear and stress and is important in addiction behavior. Notwithstanding its importance in emotional saliency, the effects of HIV and opioids in the amygdala are underexplored. To assess Tat- and morphine-induced neuropathology within the amygdala, male Tat transgenic mice were exposed to Tat for 8 weeks and administered saline and/or escalating doses of morphine twice daily (s.c.) during the last 2 weeks of Tat exposure. Eight weeks of Tat exposure decreased the acoustic startle response and the dendritic spine density in the basolateral amygdala, but not the central nucleus of the amygdala. In contrast, repeated exposure to morphine alone, but not Tat, increased the acoustic startle response and whole amygdalar levels of amyloid-β (Aβ) monomers and oligomers and tau phosphorylation at Ser396, but not neurofilament light chain levels. Co-exposure to Tat and morphine decreased habituation and prepulse inhibition to the acoustic startle response and potentiated the morphine-induced increase in Aβ monomers. Together, our findings indicate that sustained Tat and morphine exposure differentially promote synaptodendritic degeneration within the amygdala and alter sensorimotor processing.
Collapse
Affiliation(s)
- Sara R. Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Kurt F. Hauser,
| |
Collapse
|