1
|
Pérez-Morales M, Espinoza-Abad R, García-García F. Involvement of CB1R and CB2R Ligands in Sleep Disorders and Addictive Behaviors in the Last 25 Years. Pharmaceuticals (Basel) 2025; 18:266. [PMID: 40006078 PMCID: PMC11860062 DOI: 10.3390/ph18020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Over the last three decades, the decriminalization and legalization of therapeutic and recreational marijuana consumption have increased. Consequently, the availability of marijuana-based products associated with its therapeutic use has increased. These developments have stimulated research on cannabinoids involving a wide range of animal models and clinical trials. Also, it is reported that cannabinoids promote sleep in animal models and naïve human participants, and they seem to improve insomnia and sleep apnea in patients. However, evidence from rigorous clinical trials is needed. In addition, among several physiological processes, cannabinoid receptors modulate dopamine synthesis and release. In this regard, the side effects of marijuana and marijuana derivatives must not be ignored. The chronic consumption of marijuana could reduce dopamine responsivity, increase negative emotionality, and induce anhedonia. Research on the neurobiological changes associated with cannabinoid ligands in animal models, in regard to the consumption of both marijuana and marijuana-based compounds, must improve and the effectiveness of the therapeutic outcomes in clinical trials must be guaranteed. In this review, we include a detailed description of the mechanisms of action of cannabinoids on the brain and their impact on sleep disorders and addictive behaviors to emphasize the need to understand the potential risks and benefits of their therapeutic and recreational use. Evidence from basic research and clinical trials from papers published between 2000 and 2024 are included. The pharmacodynamics of these compounds is discussed in terms of sleep-wake regulation, drug addiction, and addictive behaviors.
Collapse
Affiliation(s)
- Marcel Pérez-Morales
- Health Sciences Department, Metropolitan Autonomous University, Campus Lerma, Lerma de Villada, Mexico City 52000, Estado de Mexico, Mexico;
| | - Rodolfo Espinoza-Abad
- Health Sciences Graduate Program, Health Sciences Institute, Veracruzana University, Xalapa 91190, Veracruz, Mexico;
| | - Fabio García-García
- Health Sciences Graduate Program, Health Sciences Institute, Veracruzana University, Xalapa 91190, Veracruz, Mexico;
| |
Collapse
|
2
|
Luján MÁ, Kim Y, Zhang LY, Cheer JF. Cannabinoid-based Pharmacology for the Management of Substance Use Disorders. Curr Top Behav Neurosci 2025. [PMID: 39813001 DOI: 10.1007/7854_2024_551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists. Despite considerable preclinical efforts, an agreement on the efficacy of endocannabinoid-targeting compounds for treating drug substance use disorders in humans has not been reached. In the following chapter, we will summarize preclinical and clinical evidence addressing the therapeutic potential of cannabinoids and endocannabinoid-targeting compounds in substance use disorders. To bridge the gap between animal and clinical research, we capitalize on studies evaluating the impact of endocannabinoid-targeting compounds in relevant settings, such as the management of drug relapse. Finally, we discuss the therapeutic potential of novel cannabinoid compounds that hold promise for treating substance use disorders.
Collapse
Affiliation(s)
- M Á Luján
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Y Kim
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - L Y Zhang
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - J F Cheer
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
4
|
Le Foll B, Tang VM, Rueda S, Trick LV, Boileau I. Cannabis use disorder: from neurobiology to treatment. J Clin Invest 2024; 134:e172887. [PMID: 39403927 PMCID: PMC11473150 DOI: 10.1172/jci172887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Cannabis has been legalized for medical and recreational purposes in multiple countries. A large number of people are using cannabis and some will develop cannabis use disorder (CUD). There is a growing recognition that CUD requires specific interventions. This Review will cover this topic from a variety of perspectives, with a particular emphasis on neurobiological findings and innovative treatment approaches that are being pursued. We will first describe the epidemiology and burden of disease of CUD, including risk factors associated with CUD (both in terms of general risk and genetic risk variants). Neurobiological alterations identified in brain imaging studies will be presented. Several psychosocial interventions that are useful for the management of CUD, including motivational enhancement therapy, behavioral and cognitive therapy, and contingency management, will be covered. Although no pharmacological interventions are yet approved for CUD, we present the most promising pharmacological interventions being tested.
Collapse
Affiliation(s)
- Bernard Le Foll
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Victor M. Tang
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
| | - Sergio Rueda
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
| | - Leanne V. Trick
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Isabelle Boileau
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
- Brain Health Imaging Centre, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Soler-Cedeño O, Alton H, Bi GH, Linz E, Ji L, Makriyannis A, Xi ZX. AM6527, a neutral CB1 receptor antagonist, suppresses opioid taking and seeking, as well as cocaine seeking in rodents without aversive effects. Neuropsychopharmacology 2024; 49:1678-1688. [PMID: 38600154 PMCID: PMC11399149 DOI: 10.1038/s41386-024-01861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/10/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Preclinical research has demonstrated the efficacy of CB1 receptor (CB1R) antagonists in reducing drug-taking behavior. However, clinical trials with rimonabant, a CB1R antagonist with inverse agonist profile, failed due to severe adverse effects, such as depression and suicidality. As a result, efforts have shifted towards developing novel neutral CB1R antagonists without an inverse agonist profile for treating substance use disorders. Here, we assessed AM6527, a CB1R neutral antagonist, in addiction animal models. Our findings revealed that AM6527 did not affect cocaine self-administration under fixed-ratio reinforcement schedules but dose-dependently inhibited it under progressive-ratio reinforcement schedules. Additionally, AM6527 dose-dependently inhibited heroin self-administration under both fixed-ratio and progressive-ratio reinforcement schedules and oral sucrose self-administration under a fixed-ratio reinforcement schedule, as well as cocaine- or heroin-triggered reinstatement of drug-seeking behavior in rats. However, chronic AM6527 administration for five consecutive days significantly inhibited heroin self-administration only during the initial two days, indicating tolerance development. Notably, AM6527 did not produce rewarding or aversive effects by itself in classical electrical intracranial self-stimulation and conditioned place preference tests. However, in optical intracranial self-stimulation (oICSS) maintained by optogenetic stimulation of midbrain dopamine neurons in DAT-cre mice, both AM6527 and rimonabant dose-dependently inhibited dopamine-dependent oICSS behavior. Together, these findings suggest that AM6527 effectively reduces drug-taking and seeking behaviors without rimonabant-like adverse effects. Thus, AM6527 warrants further investigation as a potential pharmacotherapy for opioid and cocaine use disorders.
Collapse
Affiliation(s)
- Omar Soler-Cedeño
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Postdoctoral Research Associate Training (PRAT) Fellow, National Institute of General Medical Sciences, Bethesda, MD, USA
| | - Hannah Alton
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Guo-Hua Bi
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Emily Linz
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Lipin Ji
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
| |
Collapse
|
6
|
Laudermilk LT, Schlosburg JE, Gay EA, Decker AM, Williams A, Runton R, Vasukuttan V, Kotiya A, Amato GS, Maitra R. Novel Peripherally Selective Cannabinoid Receptor 1 Neutral Antagonist Improves Metabolic Dysfunction-Associated Steatotic Liver Disease in Mice. ACS Pharmacol Transl Sci 2024; 7:2856-2868. [PMID: 39296275 PMCID: PMC11406686 DOI: 10.1021/acsptsci.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/21/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing globally. MASLD is characterized by clinically significant liver steatosis, and a subset of patients progress to more severe metabolic-disorder-associated steatohepatitis (MASH) with liver inflammation and fibrosis. Cannabinoid receptor 1 (CB1) antagonism is a proven therapeutic strategy for the treatment of the phenotypes that underlie MASLD, though work on early centrally penetrant compounds largely ceased following adverse psychiatric indications in humans. We present here preclinical testing of a CB1 neutral antagonist, N-[1-[8-(2-Chlorophenyl)-9-(4-chlorophenyl)-9H-purin-6-yl]-4-phenylpiperidin-4l]methanesulfonamide (RTI-348), with minimal brain exposure when administered to mice. In a diet-induced model of MASLD-induced MASH, administration of RTI-348 decreased the total body and liver weight gain. Animals treated with RTI-348 showed reduced steatosis. Furthermore, they produced lower plasma alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), biomarkers associated with liver damage. Mice maintained on the MASH diet had elevated expression of genes associated with profibrogenesis, immune response, and extracellular matrix remodeling, and treatment with RTI-348 mitigated these diet-induced changes in gene expression. Using an intracranial electrical self-stimulation model, we also demonstrated that RTI-348 does not produce an anhedonia response, as seen with the first-generation CB1 inverse agonist rimonabant. Altogether, the results herein point to RTI-348 as a promising neutral antagonist for MASH.
Collapse
Affiliation(s)
- Lucas T Laudermilk
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - Joel E Schlosburg
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298-0565, United States
| | - Elaine A Gay
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - Ann M Decker
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - Aaron Williams
- Undergraduate Studies, Clemson University, Clemson, South Carolina 29634, United States
| | - Rubica Runton
- Undergraduate Studies, Georgia Institute of Technology, Atlanta, Georgia 30332-0002, United States
| | - Vineetha Vasukuttan
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - Archana Kotiya
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - George S Amato
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - Rangan Maitra
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
- Artiam Bio Inc., Cary, North Carolina 27513-2754, United States
| |
Collapse
|
7
|
Wang X, Chen Y, Dong J, Ge J, Liu X, Liu J. Neurobiology of Stress-Induced Nicotine Relapse. Int J Mol Sci 2024; 25:1482. [PMID: 38338760 PMCID: PMC10855331 DOI: 10.3390/ijms25031482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Tobacco smoking is the leading cause of preventable death and disease. Although there are some FAD-approved medicines for controlling smoking, the relapse rate remains very high. Among the factors that could induce nicotine relapse, stress might be the most important one. In the last decades, preclinical studies have generated many new findings that lead to a better understanding of stress-induced relapse of nicotine-seeking. Several molecules such as α3β4 nicotinic acetylcholine receptor, α2-adrenergic receptors, cannabinoid receptor 1, trace amine-associated receptor 1, and neuropeptide systems (corticotropin-releasing factor and its receptors, dynorphine and kappa opioid receptor) have been linked to stress-induced nicotine relapse. In this review, we discuss recent advances in the neurobiology, treatment targets, and potential therapeutics of stress-induced nicotine relapse. We also discuss some factors that may influence stress-induced nicotine relapse and that should be considered in future studies. In the final section, a perspective on some research directions is provided. Further investigation on the neurobiology of stress-induced nicotine relapse will shed light on the development of new medicines for controlling smoking and will help us understand the interactions between the stress and reward systems in the brain.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianfeng Liu
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China (Y.C.); (J.D.)
| |
Collapse
|
8
|
Mohammad Aghaei A, Saali A, Canas MA, Weleff J, D'Souza DC, Angarita GA, Bassir Nia A. Dysregulation of the endogenous cannabinoid system following opioid exposure. Psychiatry Res 2023; 330:115586. [PMID: 37931479 PMCID: PMC10842415 DOI: 10.1016/j.psychres.2023.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/05/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
Rates of opioid-related deaths and overdoses in the United States are at record-high levels. Thus, novel neurobiological targets for the treatment of OUD are greatly needed. Given the close interaction between the endogenous opioid system and the endocannabinoid system (ECS), targeting the ECS may have therapeutic potential in OUD. The various components of the ECS, including cannabinoid receptors, their lipid-derived endogenous ligands (endocannabinoids [eCBs]), and the related enzymes, present potential targets for developing new medications in OUD treatment. The purpose of this paper is to review the clinical and preclinical literature on the dysregulation of the ECS after exposure to opioids. We review the evidence of ECS dysregulation across various study types, exposure protocols, and measurement protocols and summarize the evidence for dysregulation of ECS components at specific brain regions. Preclinical research has shown that opioids disrupt various ECS components that are region-specific. However, the results in the literature are highly heterogenous and sometimes contradictory, possibly due to variety of different methods used. Further research is needed before a confident conclusion could be made on how exposure to opioids can affect ECS components in various brain regions.
Collapse
Affiliation(s)
- Ardavan Mohammad Aghaei
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Alexandra Saali
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | | | - Jeremy Weleff
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States; VA Connecticut Healthcare System, West Haven, CT, United States
| | - Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Anahita Bassir Nia
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States.
| |
Collapse
|
9
|
Eid BG, Neamatallah T, Binmahfouz LS, Bagher AM, Alamoudi AJ, Aldawsari HM, Hanafy A, Hasan A, El-Bassossy HM, Abdel-Naim AB, Vemuri K, Makriyannis A. Effects of the CB1 receptor antagonists AM6545 and AM4113 on metabolic syndrome-induced prostatic hyperplasia in rats. BIOMOLECULES & BIOMEDICINE 2023; 23:1069-1078. [PMID: 37212036 PMCID: PMC10655885 DOI: 10.17305/bb.2023.9173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Metabolic syndrome (MetS) is a combination of metabolic disorders that can predispose individuals to benign prostatic hyperplasia (BPH). The inhibition of the cannabinoid 1 (CB1) receptor has been used to treat metabolic disorders in animal models. This study reports the use of a peripherally restricted CB1 antagonist (AM6545) and a neutral CB1 antagonist (AM4113) to improve MetS-related BPH in rats. Animals were divided into three control groups to receive either a normal rodent diet, AM6545, or AM4113. MetS was induced in the fourth, fifth, and sixth groups using a concentrated fructose solution and high-salt diet delivered as food pellets for eight weeks. The fifth and sixth groups were further given AM6545 or AM4113 for additional four weeks. Body and prostate weights were measured and prostate sections were stained with hematoxylin eosin. Cyclin D1, markers of oxidative stress and inflammation, and levels of the endocannabinoids were recorded. BPH in rats with MetS was confirmed through increased prostate weight and index, as well as histopathology. Treatment with either AM6545 or AM4113 significantly decreased prostate weight, improved prostate histology, and reduced cyclin D1 expression compared with the MetS group. Groups treated with CB1 antagonists experienced reduced lipid peroxidation, recovered glutathione depletion, restored catalase activity, and had lower inflammatory markers interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α). MetS rats treated with either AM6545 or AM4113 showed reduced concentrations of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the prostate compared with the MetS group. In conclusion, the CB1 antagonists AM6545 and AM4113 protect against MetS-induced BPH through their anti-proliferative, antioxidant, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lenah S Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmohsin J Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abeer Hanafy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Atif Hasan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
10
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
11
|
Scott-Dennis M, Rafani FA, Yi Y, Perera T, Harwood CR, Guba W, Rufer AC, Grether U, Veprintsev DB, Sykes DA. Development of a membrane-based Gi-CASE biosensor assay for profiling compounds at cannabinoid receptors. Front Pharmacol 2023; 14:1158091. [PMID: 37637423 PMCID: PMC10450933 DOI: 10.3389/fphar.2023.1158091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/05/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction: The cannabinoid receptor (CBR) subtypes 1 (CB1R) and 2 (CB2R) are key components of the endocannabinoid system (ECS), playing a central role in the control of peripheral pain, inflammation and the immune response, with further roles in the endocrine regulation of food intake and energy balance. So far, few medicines targeting these receptors have reached the clinic, suggesting that a better understanding of the receptor signalling properties of existing tool compounds and clinical candidates may open the door to the development of more effective and safer treatments. Both CB1R and CB2R are Gαi protein-coupled receptors but detecting Gαi protein signalling activity reliably and reproducibly is challenging. This is due to the inherent variability in live cell-based assays and restrictions around the use of radioactive [35S]-GTPγS, a favoured technology for developing higher-throughput membrane-based Gαi protein activity assays. Methods: Here, we describe the development of a membrane-based Gαi signalling system, produced from membrane preparations of HEK293TR cells, stably overexpressing CB1R or CB2R, and components of the Gαi-CASE biosensor. This BRET-based system allows direct detection of Gαi signalling in both cells and membranes by monitoring bioluminescence resonance energy transfer (BRET) between the α and the βγ subunits. Cells and membranes were subject to increasing concentrations of reference cannabinoid compounds, with 10 μM furimazine added to generate RET signals, which were detected on a PHERAstar FSX plate reader, then processed using MARS software and analysed in GraphPad PRISM 9.2. Results: In membranes expressing the Gi-CASE biosensor, the cannabinoid ligands profiled were found to show agonist and inverse agonist activity. Agonist activity elicited a decrease in the BRET signal, indicative of receptor activation and G protein dissociation. Inverse agonist activity caused an increase in BRET signal, indicative of receptor inactivation, and the accumulation of inactive G protein. Our membrane-based Gi-CASE NanoBRET system successfully characterised the potency (pEC50) and efficacy (Emax) of CBR agonists and inverse agonists in a 384-well screening format. Values obtained were in-line with whole-cell Gi-CASE assays and consistent with literature values obtained in the GTPγS screening format. Discussion: This novel, membrane-based Gαi protein activation assay is applicable to other Gαi-coupled GPCRs, including orphan receptors, allowing real-time higher-throughput measurements of receptor activation.
Collapse
Affiliation(s)
- Morgan Scott-Dennis
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Fikri A. Rafani
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Yicheng Yi
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Themiya Perera
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Clare R. Harwood
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Wolfgang Guba
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Arne C. Rufer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Uwe Grether
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Dmitry B. Veprintsev
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
- Z7 Biotech Limited, London, United Kingdom
| | - David A. Sykes
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
- Z7 Biotech Limited, London, United Kingdom
| |
Collapse
|
12
|
Neutral CB1 Receptor Antagonists as Pharmacotherapies for Substance Use Disorders: Rationale, Evidence, and Challenge. Cells 2022; 11:cells11203262. [PMID: 36291128 PMCID: PMC9600259 DOI: 10.3390/cells11203262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cannabinoid receptor 1 (CB1R) has been one of the major targets in medication development for treating substance use disorders (SUDs). Early studies indicated that rimonabant, a selective CB1R antagonist with an inverse agonist profile, was highly promising as a therapeutic for SUDs. However, its adverse side effects, such as depression and suicidality, led to its withdrawal from clinical trials worldwide in 2008. Consequently, much research interest shifted to developing neutral CB1R antagonists based on the recognition that rimonabant’s side effects may be related to its inverse agonist profile. In this article, we first review rimonabant’s research background as a potential pharmacotherapy for SUDs. Then, we discuss the possible mechanisms underlying its therapeutic anti-addictive effects versus its adverse effects. Lastly, we discuss the rationale for developing neutral CB1R antagonists as potential treatments for SUDs, the supporting evidence in recent research, and the challenges of this strategy. We conclude that developing neutral CB1R antagonists without inverse agonist profile may represent attractive strategies for the treatment of SUDs.
Collapse
|
13
|
Fischler PV, Soyka M, Seifritz E, Mutschler J. Off-label and investigational drugs in the treatment of alcohol use disorder: A critical review. Front Pharmacol 2022; 13:927703. [PMID: 36263121 PMCID: PMC9574013 DOI: 10.3389/fphar.2022.927703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Compounds known to be successful in the treatment of alcohol use disorder include the aversive agent, Disulfiram, the glutamatergic NMDA receptor antagonist, Acamprosate, and the opioid receptor antagonists, Naltrexone and Nalmefene. Although all four are effective in maintaining abstinence or reduction of alcohol consumption, only a small percentage of patients receive pharmacological treatment. In addition, many other medications have been investigated for their therapeutic potential in the treatment of alcohol use disorder. In this review we summarize and compare Baclofen, Gabapentin, Topiramate, Ondansetron, Varenicline, Aripiprazole, Quetiapine, Clozapine, Antidepressants, Lithium, Neuropeptide Y, Neuropeptide S, Corticotropin-releasing factor antagonists, Oxytocin, PF-05190457, Memantine, Ifenprodil, Samidorphan, Ondelopran, ABT-436, SSR149415, Mifepristone, Ibudilast, Citicoline, Rimonabant, Surinabant, AM4113 and Gamma-hydroxybutyrate While some have shown promising results in the treatment of alcohol use disorder, others have disappointed and should be excluded from further investigation. Here we discuss the most promising results and highlight medications that deserve further preclinical or clinical study. Effective, patient-tailored treatment will require greater understanding provided by many more preclinical and clinical studies.
Collapse
Affiliation(s)
- Pascal Valentin Fischler
- Department for Gynecology and Obstetrics, Women’s Clinic Lucerne, Cantonal Hospital of Lucerne, Lucerne, Switzerland
- *Correspondence: Pascal Valentin Fischler,
| | - Michael Soyka
- Psychiatric Hospital University of Munich, Munich, Germany
| | - Erich Seifritz
- Director of the Clinic for Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Clinic Zürich, Zürich, Switzerland
| | | |
Collapse
|
14
|
Sepulveda DE, Morris DP, Raup-Konsavage WM, Sun D, Vrana KE, Graziane NM. Cannabigerol (CBG) attenuates mechanical hypersensitivity elicited by chemotherapy-induced peripheral neuropathy. Eur J Pain 2022; 26:1950-1966. [PMID: 35899583 DOI: 10.1002/ejp.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cannabigerol (CBG) is a non-psychoactive phytocannabinoid produced by the plant Cannabis sativa with affinity to various receptors involved in nociception. As a result, CBG is marketed as an over-the-counter treatment for many forms of pain. However, there is very little research-based evidence for the efficacy of CBG as an anti-nociceptive agent. METHODS To begin to fill this knowledge gap, we assessed the anti-nociceptive effects of CBG in C57BL/6 mice using three different models of pain; cisplatin-induced peripheral neuropathy, the formalin test, and the tail-flick assay. RESULTS Using the von Frey test, we found that CBG-attenuated mechanical hypersensitivity evoked by cisplatin-induced peripheral neuropathy in both male and female mice. Additionally, we observed that this CBG-induced reduction in mechanical hypersensitivity was attenuated by the α2 -adrenergic receptor antagonist atipamezole (3 mg/kg, i.p.) and the CB1 R antagonist, AM4113 (3 mg/kg, i.p.), and blocked by the CB2 R antagonist/inverse agonist, SR144528 (10 mg/kg, i.p.). We found that the TRPV1 antagonist, SB705498 (20 mg/kg, i.p.) was unable to prevent CBG actions. Furthermore, we show that CBG:CBD oil (10 mg/kg, i.p.) was more effective than pure CBG (10 mg/kg) at reducing mechanical hypersensitivity in neuropathic mice. Lastly, we show that pure CBG and CBG:CBD oil were ineffective at reducing nociception in other models of pain, including the formalin and tail flick assays. CONCLUSIONS Our findings support the role of CBG in alleviating mechanical hypersensitivity evoked by cisplatin-induced peripheral neuropathy, but highlight that these effects may be limited to specific types of pain. SIGNIFICANCE There are few effective treatments for neuropathic pain and neuropathic pain is projected to increase with the aging population. We demonstrate that CBG (cannabigerol) and CBG:CBD oil attenuate neuropathy-induced mechanical hypersensitivity mice. Second, we identify receptor targets that mediate CBG-induced reduction in mechanical hypersensitivity in neuropathic mice. Third, we demonstrate that an acute injection of CBG is anti-nociceptive specifically for neuropathic pain rather than other forms of pain, including persistent pain and thermal pain.
Collapse
Affiliation(s)
- Diana E Sepulveda
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | | | - Wesley M Raup-Konsavage
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Dongxiao Sun
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kent E Vrana
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Nicholas M Graziane
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
15
|
Paulus V, Billieux J, Benyamina A, Karila L. Cannabidiol in the context of substance use disorder treatment: A systematic review. Addict Behav 2022; 132:107360. [PMID: 35580370 DOI: 10.1016/j.addbeh.2022.107360] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cannabidiol (CBD) is a phytocannabinoid found in the Cannabis plant. CBD has received significant medical attention in relation to its anticonvulsant, anxiolytic, and antipsychotic characteristics. An increasing number of studies focusing on the anti-addictive properties of CBD have recently been published. In this systematic review, we aim to offer a comprehensive overview of animal and human studies regarding the impact of CBD on substance use disorders (SUDs). METHODS A systematic search was performed on the PubMed database in February 2021. We included all articles assessing the effects of CBD on substance use disorders. RESULTS The current systematic review suggests that CBD might offer promising therapeutic potential for the treatment of SUD, based on available animal and human studies. Animal studies showed a positive impact of CBD in the context of alcohol, opioids, and methamphetamine use (e.g., diminishing of drug-seeking behaviors). The results for cocaine use were mixed among reviewed studies, and CBD was not found to have an effect in animal studies on cannabis use. No animal study was identified that focused on the impact of CBD on nicotine use. Human studies showed a positive impact of CBD in the context of nicotine, cannabis, and opioid use (e.g., frequency and quantity of consumption). In contrast, CBD was not found to have an effect in human studies on cocaine or alcohol use. No human study was identified that investigated the impact of CBD on methamphetamine use. CONCLUSIONS CBD might offer promising therapeutic potential for the treatment of SUD, especially for nicotine, cannabis, and opioid use disorders, based on available human studies. The available research evidence is, however, sparse and more research on humans is needed.
Collapse
Affiliation(s)
- Victoria Paulus
- Hôpital Universitaire Paul Brousse (AP-HP), UR PSYCOMADD, Université Paris-Saclay, Villejuif, France; Faculty of Medicine, AP-HP, Sorbonne Université, Paris, France
| | - Joël Billieux
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Amine Benyamina
- Hôpital Universitaire Paul Brousse (AP-HP), UR PSYCOMADD, Université Paris-Saclay, Villejuif, France
| | - Laurent Karila
- Hôpital Universitaire Paul Brousse (AP-HP), UR PSYCOMADD, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
16
|
Therapeutic potential of PIMSR, a novel CB1 receptor neutral antagonist, for cocaine use disorder: evidence from preclinical research. Transl Psychiatry 2022; 12:286. [PMID: 35851573 PMCID: PMC9293959 DOI: 10.1038/s41398-022-02059-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/08/2022] Open
Abstract
Cannabinoid CB1 receptors (CB1Rs) have been major targets in medication development for the treatment of substance use disorders. However, clinical trials with rimonabant, a CB1R antagonist/inverse agonist, failed due to severe side effects. Here, we evaluated the therapeutic potential of PIMSR, a neutral CB1R antagonist lacking an inverse agonist profile, against cocaine's behavioral effects in experimental animals. We found that systemic administration of PIMSR dose-dependently inhibited cocaine self-administration under fixed-ratio (FR5), but not FR1, reinforcement, shifted the cocaine self-administration dose-response curve downward, decreased incentive motivation to seek cocaine under progressive-ratio reinforcement, and reduced cue-induced reinstatement of cocaine seeking. PIMSR also inhibited oral sucrose self-administration. Importantly, PIMSR alone is neither rewarding nor aversive as assessed by place conditioning. We then used intracranial self-stimulation (ICSS) to explore the possible involvement of the mesolimbic dopamine system in PIMSR's action. We found that PIMSR dose-dependently attenuated cocaine-enhanced ICSS maintained by electrical stimulation of the medial forebrain bundle in rats. PIMSR itself failed to alter electrical ICSS, but dose-dependently inhibited ICSS maintained by optical stimulation of midbrain dopamine neurons in transgenic DAT-Cre mice, suggesting the involvement of dopamine-dependent mechanisms. Lastly, we examined the CB1R mechanisms underlying PIMSR's action. We found that PIMSR pretreatment attenuated Δ9-tetrahydrocannabinol (Δ9-THC)- or ACEA (a selective CB1R agonist)-induced reduction in optical ICSS. Together, our findings suggest that the neutral CB1R antagonist PIMSR deserves further research as a promising pharmacotherapeutic for cocaine use disorder.
Collapse
|
17
|
Asth L, Santos AC, Moreira FA. The endocannabinoid system and drug-associated contextual memories. Behav Pharmacol 2022; 33:90-104. [PMID: 33491992 DOI: 10.1097/fbp.0000000000000621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Drug abuse and addiction can be initiated and reinstated by contextual stimuli previously paired with the drug use. The influence exerted by the context on drug-seeking behaviour can be modelled in experimental animals with place-conditioning protocols. Here, we review the effects of cannabinoids in place conditioning and the therapeutic potential of the endocannabinoid system for interfering with drug-related memories. The phytocannabinoid Δ9-tetrahydrocannabinol (THC) tends to induce conditioned place preference (CPP) at low doses and conditioned place aversion at high doses; cannabidiol is devoid of any effect, yet it inhibits CPP induced by some drugs. Synthetic CB1 receptor agonists tend to recapitulate the biphasic profile observed with THC, whereas selective antagonists/inverse agonists inhibit CPP induced by cocaine, nicotine, alcohol and opioids. However, their therapeutic use is limited by potential psychiatric side effects. The CB2 receptor has also attracted attention, because selective CB2 receptor agonists inhibit cocaine-induced CPP. Inhibitors of endocannabinoid membrane transport and hydrolysis yield mixed results. In targeting the endocannabinoid system for developing new treatments for drug addiction, future research should focus on 'neutral' CB1 receptor antagonists and CB2 receptor agonists. Such compounds may offer a well-tolerated pharmacological profile and curb addiction by preventing drug-seeking triggered by conditioned contextual cues.
Collapse
Affiliation(s)
- Laila Asth
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | |
Collapse
|
18
|
Le Foll B, Piper ME, Fowler CD, Tonstad S, Bierut L, Lu L, Jha P, Hall WD. Tobacco and nicotine use. Nat Rev Dis Primers 2022; 8:19. [PMID: 35332148 DOI: 10.1038/s41572-022-00346-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 01/04/2023]
Abstract
Tobacco smoking is a major determinant of preventable morbidity and mortality worldwide. More than a billion people smoke, and without major increases in cessation, at least half will die prematurely from tobacco-related complications. In addition, people who smoke have a significant reduction in their quality of life. Neurobiological findings have identified the mechanisms by which nicotine in tobacco affects the brain reward system and causes addiction. These brain changes contribute to the maintenance of nicotine or tobacco use despite knowledge of its negative consequences, a hallmark of addiction. Effective approaches to screen, prevent and treat tobacco use can be widely implemented to limit tobacco's effect on individuals and society. The effectiveness of psychosocial and pharmacological interventions in helping people quit smoking has been demonstrated. As the majority of people who smoke ultimately relapse, it is important to enhance the reach of available interventions and to continue to develop novel interventions. These efforts associated with innovative policy regulations (aimed at reducing nicotine content or eliminating tobacco products) have the potential to reduce the prevalence of tobacco and nicotine use and their enormous adverse impact on population health.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.
- Departments of Family and Community Medicine, Psychiatry, Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Megan E Piper
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Center for Tobacco Research and Intervention, Madison, WI, USA
| | - Christie D Fowler
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
| | - Serena Tonstad
- Section for Preventive Cardiology, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Institute on Drug Dependence, Peking University Health Science Center, Beijing, China
| | - Prabhat Jha
- Centre for Global Health Research, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Wayne D Hall
- National Centre for Youth Substance Use Research, The University of Queensland, St Lucia, Queensland, Australia
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
19
|
Simone JJ, Green MR, McCormick CM. Endocannabinoid system contributions to sex-specific adolescent neurodevelopment. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110438. [PMID: 34534603 DOI: 10.1016/j.pnpbp.2021.110438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023]
Abstract
With an increasing number of countries and states adopting legislation permitting the use of cannabis for medical purposes, there is a growing interest among health and research professionals into the system through which cannabinoids principally act, the endocannabinoid system (ECS). Much of the seminal research into the ECS dates back only 30 years and, although there has been tremendous development within the field during this time, many questions remain. More recently, investigations have emerged examining the contributions of the ECS to normative development and the effect of altering this system during important critical periods. One such period is adolescence, a unique period during which brain and behaviours are maturing and reorganizing in preparation for adulthood, including shifts in endocannabinoid biology. The purpose of this review is to discuss findings to date regarding the maturation of the ECS during adolescence and the consequences of manipulations of the ECS during this period to normative neurodevelopmental processes, as well as highlight sex differences in ECS function, important technical considerations, and future directions. Because most of what we know is derived from preclinical studies on rodents, we provide relevant background of this model and some commentary on the translational relevance of the research in this area.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Huxley Health Inc., 8820 Jane St., Concord, ON, L4K 2M9, Canada; eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Matthew R Green
- eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Cheryl M McCormick
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Department of Psychology, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
20
|
Saravia R, Ten-Blanco M, Pereda-Pérez I, Berrendero F. New Insights in the Involvement of the Endocannabinoid System and Natural Cannabinoids in Nicotine Dependence. Int J Mol Sci 2021; 22:13316. [PMID: 34948106 PMCID: PMC8715672 DOI: 10.3390/ijms222413316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Nicotine, the main psychoactive component in tobacco smoke, plays a major role in tobacco addiction, producing a high morbidity and mortality in the world. A great amount of research has been developed to elucidate the neural pathways and neurotransmitter systems involved in such a complex addictive behavior. The endocannabinoid system, which has been reported to participate in the addictive properties of most of the prototypical drugs of abuse, is also implicated in nicotine dependence. This review summarizes and updates the main behavioral and biochemical data involving the endocannabinoid system in the rewarding properties of nicotine as well as in nicotine withdrawal and relapse to nicotine-seeking behavior. Promising results from preclinical studies suggest that manipulation of the endocannabinoid system could be a potential therapeutic strategy for treating nicotine addiction.
Collapse
Affiliation(s)
- Rocio Saravia
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain;
| | - Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| |
Collapse
|
21
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int J Mol Sci 2021; 22:9472. [PMID: 34502379 PMCID: PMC8430969 DOI: 10.3390/ijms22179472] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
22
|
Ahmed M, Boileau I, Le Foll B, Carvalho AF, Kloiber S. The endocannabinoid system in social anxiety disorder: from pathophysiology to novel therapeutics. ACTA ACUST UNITED AC 2021; 44:81-93. [PMID: 34468550 PMCID: PMC8827369 DOI: 10.1590/1516-4446-2021-1926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Social anxiety disorder (SAD) is a highly prevalent psychiatric disorder that presents with an early age of onset, chronic disease course, and increased risk of psychiatric comorbidity. Current treatment options for SAD are associated with low response rates, suboptimal efficacy, and possible risk of adverse effects. Investigation of new neurobiological mechanisms may aid in the identification of more specific therapeutic targets for the treatment of this disorder. Emerging evidence suggests that the endogenous cannabinoid system, also referred to as the endocannabinoid system (ECS), could play a potential role in the pathophysiology of SAD. This review discusses the known pathophysiological mechanisms of SAD, the potential role of the ECS in this disorder, current drugs targeting the ECS, and the potential of these novel compounds to enhance the therapeutic armamentarium for SAD. Further investigational efforts, specifically in human populations, are warranted to improve our knowledge of the ECS in SAD.
Collapse
Affiliation(s)
- Mashal Ahmed
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Isabelle Boileau
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Andre F Carvalho
- Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Deakin University, Geelong, VIC, Australia, 3216
| | - Stefan Kloiber
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Parihar VK, Syage A, Flores L, Lilagan A, Allen BD, Angulo MC, Song J, Smith SM, Arechavala RJ, Giedzinski E, Limoli CL. The Cannabinoid Receptor 1 Reverse Agonist AM251 Ameliorates Radiation-Induced Cognitive Decrements. Front Cell Neurosci 2021; 15:668286. [PMID: 34262437 PMCID: PMC8273551 DOI: 10.3389/fncel.2021.668286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Despite advancements in the radiotherapeutic management of brain malignancies, resultant sequelae include persistent cognitive dysfunction in the majority of survivors. Defining the precise causes of normal tissue toxicity has proven challenging, but the use of preclinical rodent models has suggested that reductions in neurogenesis and microvascular integrity, impaired synaptic plasticity, increased inflammation, and alterations in neuronal structure are contributory if not causal. As such, strategies to reverse these persistent radiotherapy-induced neurological disorders represent an unmet medical need. AM251, a cannabinoid receptor 1 reverse agonist known to facilitate adult neurogenesis and synaptic plasticity, may help to ameliorate radiation-induced CNS impairments. To test this hypothesis, three treatment paradigms were used to evaluate the efficacy of AM251 to ameliorate radiation-induced learning and memory deficits along with disruptions in mood at 4 and 12 weeks postirradiation. Results demonstrated that acute (four weekly injections) and chronic (16 weekly injections) AM251 treatments (1 mg/kg) effectively alleviated cognitive and mood dysfunction in cranially irradiated mice. The beneficial effects of AM251 were exemplified by improved hippocampal- and cortical-dependent memory function on the novel object recognition and object in place tasks, while similar benefits on mood were shown by reductions in depressive- and anxiety-like behaviors on the forced swim test and elevated plus maze. The foregoing neurocognitive benefits were associated with significant increases in newly born (doublecortin+) neurons (1.7-fold), hippocampal neurogenesis (BrdU+/NeuN+mature neurons, 2.5-fold), and reduced expression of the inflammatory mediator HMGB (1.2-fold) in the hippocampus of irradiated mice. Collectively, these findings indicate that AM251 ameliorates the effects of clinically relevant cranial irradiation where overall neurological benefits in memory and mood coincided with increased hippocampal cell proliferation, neurogenesis, and reduced expression of proinflammatory markers.
Collapse
Affiliation(s)
- Vipan K Parihar
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Amber Syage
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Lidia Flores
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Angelica Lilagan
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Maria C Angulo
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Joseph Song
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Sarah M Smith
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Rebecca J Arechavala
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
24
|
Dulman RS, Zhang H, Banerjee R, Krishnan HR, Dong B, Hungund BL, Vinod KY, Pandey SC. CB1 receptor neutral antagonist treatment epigenetically increases neuropeptide Y expression and decreases alcohol drinking. Neuropharmacology 2021; 195:108623. [PMID: 34048869 DOI: 10.1016/j.neuropharm.2021.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Alcohol consumption is mediated by several important neuromodulatory systems, including the endocannabinoid and neuropeptide Y (NPY) systems in the limbic brain circuitry. However, molecular mechanisms through which cannabinoid-1 (CB1) receptors regulate alcohol consumption are still unclear. Here, we investigated the role of the CB1 receptor-mediated downstream regulation of NPY via epigenetic mechanisms in the amygdala. Alcohol drinking behavior was measured in adult male C57BL/6J mice treated with a CB1 receptor neutral antagonist AM4113 using a two-bottle choice paradigm while anxiety-like behavior was assessed in the light-dark box (LDB) test. The CB1 receptor-mediated changes in the protein levels of phosphorylated cAMP-responsive element binding protein (pCREB), CREB binding protein (CBP), H3K9ac, H3K14ac and NPY, and the mRNA levels of Creb1, Cbp, and Npy were measured in amygdaloid brain structures. Npy-specific changes in the levels of acetylated histone (H3K9/14ac) and CBP in the amygdala were also measured. We found that the pharmacological blockade of CB1 receptors with AM4113 reduced alcohol consumption and, in an ethanol-naïve cohort, reduced anxiety-like behavior in the LDB test. Treatment with AM4113 also increased the mRNA levels of Creb1 and Cbp in the amygdala as well as the protein levels of pCREB, CBP, H3K9ac and H3K14ac in the central and medial nucleus of amygdala, but not in the basolateral amygdala. Additionally, AM4113 treatment increased occupancy of CBP and H3K9/14ac at the Npy gene promoter, leading to an increase in both mRNA and protein levels of NPY in the amygdala. These novel findings suggest that CB1 receptor-mediated CREB signaling plays an important role in the modulation of NPY function through an epigenetic mechanism and further support the potential use of CB1 receptor neutral antagonists for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Russell S Dulman
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Ritabrata Banerjee
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Harish R Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Bin Dong
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Basalingappa L Hungund
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA; New York State Psychiatric Institute, New York, NY, 10032, USA
| | - K Yaragudri Vinod
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA; Emotional Brain Institute, Orangeburg, NY, 10962, USA; Department of Child and Adolescent Psychiatry, New York School of Medicine, New York, NY, 10016, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
25
|
Evidence for the Endocannabinoid System as a Therapeutic Target in the Treatment of Cannabis Use Disorder. CURRENT ADDICTION REPORTS 2021; 7:545-552. [PMID: 33816054 DOI: 10.1007/s40429-020-00342-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purpose of Review Cannabis use disorder (CUD) is highly prevalent. Psychotherapy alone is not adequately effective, with few individuals achieving abstinence. Pharmacotherapeutic supplementation may improve efficacy, and the endocannabinoid system presents a target specifically dysregulated by heavy cannabis use. This review compiles current literature evaluating endocannabinoid modulation as a treatment strategy for CUD, with implications for future research. Recent Findings Cannabinoid receptor agonists have been found to reduce cannabis withdrawal symptoms without a notable effect on relapse, and antagonists can produce severe psychiatric symptoms. Fatty acid amide hydrolase inhibitors and cannabidiol demonstrate the most promising efficacy in treating CUD thus far, but research with these compounds is still preliminary. Summary Components of the endocannabinoid system may serve as unique treatment targets with differential efficacy for the treatment of cannabis use disorder as a whole. Further research is needed exploring novel methods for targeting endocannabinoid dysfunction in CUD.
Collapse
|
26
|
Laviolette SR. Exploring the impact of adolescent exposure to cannabinoids and nicotine on psychiatric risk: insights from translational animal models. Psychol Med 2021; 51:940-947. [PMID: 31801641 DOI: 10.1017/s0033291719003325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adolescence represents a highly sensitive period of mammalian neurodevelopment wherein critical synaptic and structural changes are taking place in brain regions involved in cognition, self-regulation and emotional processing. Importantly, neural circuits such as the mesocorticolimbic pathway, comprising the prefrontal cortex, sub-cortical mesolimbic dopamine system and their associated input/output centres, are particularly vulnerable to drug-related insults. Human adolescence represents a life-period wherein many individuals first begin to experiment with recreational drugs such as nicotine and cannabis, both of which are known to profoundly modulate neurochemical signalling within the mesocorticolimbic pathway and to influence both long-term and acute neuropsychiatric symptoms. While a vast body of epidemiological clinical research has highlighted the effects of adolescent exposure to drugs such as nicotine and cannabis on the developing adolescent brain, many of these studies are limited to correlative analyses and rely on retrospective self-reports from subjects, making causal interpretations difficult to discern. The use of pre-clinical animal studies can avoid these issues by allowing for precise temporal and dose-related experimental control over drug exposure during adolescence. In addition, such animal-based research has the added advantage of allowing for in-depth molecular, pharmacological, genetic and neuronal analyses of how recreational drug exposure may set up the brain for neuropsychiatric risk. This review will explore some of the advantages and disadvantages of these models, with a focus on the common, divergent and synergistic effects of adolescent nicotine and cannabis exposure on neuropsychiatric risk.
Collapse
Affiliation(s)
- Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, CanadaN6A3K7
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, CanadaN6A3K7
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, CanadaN6A3K7
| |
Collapse
|
27
|
Abstract
Cannabis use disorder (CUD) is an underappreciated risk of using cannabis that affects ~10% of the 193 million cannabis users worldwide. The individual and public health burdens are less than those of other forms of drug use, but CUD accounts for a substantial proportion of persons seeking treatment for drug use disorders owing to the high global prevalence of cannabis use. Cognitive behavioural therapy, motivational enhancement therapy and contingency management can substantially reduce cannabis use and cannabis-related problems, but enduring abstinence is not a common outcome. No pharmacotherapies have been approved for cannabis use or CUD, although a number of drug classes (such as cannabinoid agonists) have shown promise and require more rigorous evaluation. Treatment of cannabis use and CUD is often complicated by comorbid mental health and other substance use disorders. The legalization of non-medical cannabis use in some high-income countries may increase the prevalence of CUD by making more potent cannabis products more readily available at a lower price. States that legalize medical and non-medical cannabis use should inform users about the risks of CUD and provide information on how to obtain assistance if they develop cannabis-related mental and/or physical health problems.
Collapse
|
28
|
Eid BG, Neamatallah T, Hanafy A, El-Bassossy HM, Binmahfouz L, Aldawsari HM, Hasan A, El-Aziz GA, Vemuri K, Makriyannis A. Interference with TGFβ1-Mediated Inflammation and Fibrosis Underlies Reno-Protective Effects of the CB1 Receptor Neutral Antagonists AM6545 and AM4113 in a Rat Model of Metabolic Syndrome. Molecules 2021; 26:866. [PMID: 33562080 PMCID: PMC7914730 DOI: 10.3390/molecules26040866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 01/08/2023] Open
Abstract
The role of cannabinoid receptors in nephropathy is gaining much attention. This study investigated the effects of two neutral CB1 receptor antagonists, AM6545 and AM4113, on nephropathy associated with metabolic syndrome (MetS). MetS was induced in rats by high-fructose high-salt feeding for 12 weeks. AM6545, the peripheral silent antagonist and AM4113, the central neutral antagonist were administered in the last 4 weeks. At the end of study, blood and urine samples were collected for biochemical analyses while the kidneys were excised for histopathological investigation and transforming growth factor beta 1 (TGFβ1) measurement. MetS was associated with deteriorated kidney function as indicated by the elevated proteinuria and albumin excretion rate. Both compounds equally inhibited the elevated proteinuria and albumin excretion rate while having no effect on creatinine clearance and blood pressure. In addition, AM6545 and AM4113 alleviated the observed swelling and inflammatory cells infiltration in different kidney structures. Moreover, AM6545 and AM4113 alleviated the observed histopathological alterations in kidney structure of MetS rats. MetS was associated with a ten-fold increase in urine uric acid while both compounds blocked this increase. Furthermore, AM6545 and AM4113 completely prevented the collagen deposition and the elevated expression of the TGFβ1 seen in MetS animals. In conclusion, AM6545 and AM4113, possess reno-protective effects by interfering with TGFβ1-mediated renal inflammation and fibrosis, via peripheral action.
Collapse
Affiliation(s)
- Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (A.H.); (L.B.)
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (A.H.); (L.B.)
| | - Abeer Hanafy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (A.H.); (L.B.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Hany M. El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Lenah Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (A.H.); (L.B.)
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Atif Hasan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Gamal Abd El-Aziz
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; (K.V.); (A.M.)
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; (K.V.); (A.M.)
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
29
|
Aderibigbe AO, Pandey P, Doerksen RJ. Negative allosteric modulators of cannabinoid receptor 1: Ternary complexes including CB1, orthosteric CP55940 and allosteric ORG27569. J Biomol Struct Dyn 2021; 40:5729-5747. [PMID: 33480332 DOI: 10.1080/07391102.2021.1873187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In October 2019, the first X-ray crystal structure of a ternary cannabinoid receptor 1 (CB1) complex (PDB ID: 6KQI) was published, including the well-known orthosteric agonist, CP55940, and the well-studied negative allosteric modulator, ORG27569. Prior to the release of 6KQI, we applied binding pocket analysis and molecular docking to carefully prepared computational models of the ternary CB1 complex, in order to predict the binding site for ORG27569 with the CP55940-bound CB1 receptor. We carefully studied the binding pose of agonist ligands in the CB1 orthosteric pocket, including CP55940. Our computational studies identified the most favorable binding site for ORG27569, in the CP55940-CB1 complex, to be at the intracellular end of the receptor. However, in the 6KQI structure, ORG27569 was found at an extrahelical, intramembrane site on the complex, a site that partially overlaps with the site predicted in our calculations to be second-best. We performed molecular dynamics simulations of the CP55940-bound CB1 complex with ORG27569 at different binding sites. Our analysis of the simulations indicated that ORG27569 bound favorably and stably in each simulation, but, as in the earlier calculations, bound best at the intracellular site, which is different than that found in the crystal structure. These results suggest that the intracellular site might serve as an alternative binding site in CB1. Our studies show that the computational techniques we used are valuable in identifying ligand-binding pockets in proteins, and could be useful for the study of the interaction mode of other allosteric modulators.
Collapse
Affiliation(s)
- AyoOluwa O Aderibigbe
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Pankaj Pandey
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, USA.,National Center for Natural Products Research, University of Mississippi, University, Mississippi, USA
| | - Robert J Doerksen
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, USA.,Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
| |
Collapse
|
30
|
Xu W, Li H, Wang L, Zhang J, Liu C, Wan X, Liu X, Hu Y, Fang Q, Xiao Y, Bu Q, Wang H, Tian J, Zhao Y, Cen X. Endocannabinoid signaling regulates the reinforcing and psychostimulant effects of ketamine in mice. Nat Commun 2020; 11:5962. [PMID: 33235205 PMCID: PMC7686380 DOI: 10.1038/s41467-020-19780-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/27/2020] [Indexed: 02/05/2023] Open
Abstract
The abuse potential of ketamine limits its clinical application, but the precise mechanism remains largely unclear. Here we discovered that ketamine significantly remodels the endocannabinoid-related lipidome and activates 2-arachidonoylglycerol (2-AG) signaling in the dorsal striatum (caudate nucleus and putamen, CPu) of mice. Elevated 2-AG in the CPu is essential for the psychostimulant and reinforcing effects of ketamine, whereas blockade of the cannabinoid CB1 receptor, a predominant 2-AG receptor, attenuates ketamine-induced remodeling of neuronal dendrite structure and neurobehaviors. Ketamine represses the transcription of the monoacylglycerol lipase (MAGL) gene by promoting the expression of PRDM5, a negative transcription factor of the MAGL gene, leading to increased 2-AG production. Genetic overexpression of MAGL or silencing of PRDM5 expression in the CPu robustly reduces 2-AG production and ketamine effects. Collectively, endocannabinoid signaling plays a critical role in mediating the psychostimulant and reinforcing properties of ketamine.
Collapse
Affiliation(s)
- Wei Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Jiamei Zhang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Chunqi Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Xuemei Wan
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Xiaochong Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Yiming Hu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Qiyao Fang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Yuanyuan Xiao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Hongbo Wang
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 264005, Yantai, People's Republic of China
| | - Jingwei Tian
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 264005, Yantai, People's Republic of China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China.
| |
Collapse
|
31
|
Luján MÁ, Cheer JF, Melis M. Choosing the right drug: status and future of endocannabinoid research for the prevention of drug-seeking reinstatement. Curr Opin Pharmacol 2020; 56:29-38. [PMID: 33068883 DOI: 10.1016/j.coph.2020.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/06/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022]
Abstract
Prolonged exposure to drugs of abuse leads to severe alterations in mesocorticolimbic dopamine circuitry deeply implicated in substance use disorders. Despite considerable efforts, few medications to reduce relapse rates are currently available. To solve this issue, researchers are uncovering therapeutic opportunities offered by the endocannabinoid system. The cannabinoid receptor type 1 (CB1R), and its endogenous ligands, participate in orchestration of cue-triggered and stress-triggered responses leading to obtain natural and drug rewards. Here, we review the evidence supporting the use of CB1R neutral antagonists, allosteric modulators, indirect agonists, as well as multi-target compounds, as improved alternatives compared to classical CB1R antagonists. The promising therapeutic value of other substrates participating in endocannabinoid signaling, like peroxisome proliferator-activated receptors, is also covered. Overall, a wide body of pre-clinical evidence avails novel pharmacological strategies interacting with the endocannabinoid system as clinically amenable candidates able to counteract drug-induced dopamine maladaptations contributing to increased risk of relapse.
Collapse
Affiliation(s)
- Miguel Á Luján
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy.
| |
Collapse
|
32
|
The Cannabinoid CB 1 Receptor in Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:646-659. [PMID: 33077399 DOI: 10.1016/j.bpsc.2020.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/28/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Converging lines of evidence from epidemiological, preclinical, and experimental studies indicate that the endocannabinoid system may be involved in the pathophysiology of schizophrenia and suggest that the cannabinoid CB1 receptor may be a potential therapeutic target. In view of this, we first provide an overview of the endocannabinoid system and systematically review the evidence for CB1 receptor alterations in animal models of schizophrenia and clinical studies in schizophrenia. MEDLINE, EMBASE, PsycArticles, and PsycINFO were systematically searched from inception until January 7, 2020. Of 1187 articles, 24 were included in the systematic review, including 8 preclinical studies measuring the CB1 receptor in the context of an established animal model of schizophrenia and 16 clinical studies investigating the CB1 receptor in schizophrenia. The majority of preclinical studies (6 of 8) have shown that the CB1 receptor is reduced in the context of animal models of schizophrenia. Moreover, the majority of in vivo clinical imaging studies that used arterial blood sampling to quantify the radiotracer kinetics (3 of 4) have shown reduced CB1 receptor availability in schizophrenia. However, mixed findings have been reported in ex vivo literature, including reports of no change in receptor levels (5 of 11), increased receptor levels (4 of 11), and decreased receptor levels (2 of 11). We review methodological reasons for these discrepancies and review how CB1 receptor dysfunction may contribute to the pathophysiology of schizophrenia, drawing on the role of the receptor in regulating synaptic transmission and synaptic plasticity. We also discuss how the CB1 receptor may be a potential therapeutic target.
Collapse
|
33
|
Murphy T, Le Foll B. Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs. Biomolecules 2020; 10:biom10060855. [PMID: 32512776 PMCID: PMC7356944 DOI: 10.3390/biom10060855] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity rates are increasing worldwide and there is a need for novel therapeutic treatment options. The endocannabinoid system has been linked to homeostatic processes, including metabolism, food intake, and the regulation of body weight. Rimonabant, an inverse agonist for the cannabinoid CB1 receptor, was effective at producing weight loss in obese subjects. However, due to adverse psychiatric side effects, rimonabant was removed from the market. More recently, we reported an inverse relationship between cannabis use and BMI, which has now been duplicated by several groups. As those results may appear contradictory, we review here preclinical and clinical studies that have studied the impact on body weight of various cannabinoid CB1 drugs. Notably, we will review the impact of CB1 inverse agonists, agonists, partial agonists, and neutral antagonists. Those findings clearly point out the cannabinoid CB1 as a potential effective target for the treatment of obesity. Recent preclinical studies suggest that ligands targeting the CB1 may retain the therapeutic potential of rimonabant without the negative side effect profile. Such approaches should be tested in clinical trials for validation.
Collapse
Affiliation(s)
- Thomas Murphy
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +1-416-535-8501
| |
Collapse
|
34
|
Butler K, Le Foll B. Novel therapeutic and drug development strategies for tobacco use disorder: endocannabinoid modulation. Expert Opin Drug Discov 2020; 15:1065-1080. [DOI: 10.1080/17460441.2020.1767581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kevin Butler
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Donvito G, Muldoon PP, Jackson KJ, Ahmad U, Zaveri NT, McIntosh JM, Chen X, Lichtman AH, Damaj MI. Neuronal nicotinic acetylcholine receptors mediate ∆ 9 -THC dependence: Mouse and human studies. Addict Biol 2020; 25:e12691. [PMID: 30378732 PMCID: PMC6509006 DOI: 10.1111/adb.12691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 11/29/2022]
Abstract
Cessation from prolonged use of ∆9 -tetrahydrocannabinol (THC), the primary active compound responsible for the cannabimimetic effects of cannabis, results in a mild to moderate withdrawal syndrome in humans and laboratory animals. Whereas manipulations of the endogenous cannabinoid system (eg, cannabinoid receptors and endocannabinoid regulating enzymes) alter nicotine withdrawal, in this study we asked the reciprocal question. Do nicotinic acetylcholine receptors (nAChRs) modulate THC withdrawal? To assess the role of different nAChR subtypes in THC withdrawal, we used transgenic mouse, preclinical pharmacological, and human genetic correlation approaches. Our findings show that selective α3β4* nAChR antagonist, AuIB, and α3β4* nAChR partial agonist, AT-1001, dose-dependently attenuated somatic withdrawal signs in THC-dependent mice that were challenged with the cannabinoid-1 receptor antagonist rimonabant. Additionally, THC-dependent α5 and α6 nAChR knockout (KO) mice displayed decreased rimonabant precipitated somatic withdrawal signs compared with their wild-type counterparts. In contrast, β2 and α7 nAChR KO mice showed no alterations in THC withdrawal signs. Moreover, deletion of β2 nAChR did not alter the reduced expression of somatic signs by the preferred α6β4* antagonist, BulA [T5A;P60]. Finally, the human genetic association studies indicated that variations in the genes that code for the α5, α3, β4, and α6 nAChRs were associated with cannabis disorder phenotypes. Overall, these findings suggest that α3β4* and α6β4* nAChR subtypes represent viable targets for the development of medications to counteract THC dependence.
Collapse
Affiliation(s)
- Giulia Donvito
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Broad St., Molecular Medicine Research Building, Box 980613, Richmond, VA, 23298, USA
| | - Pretal P. Muldoon
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Broad St., Molecular Medicine Research Building, Box 980613, Richmond, VA, 23298, USA
| | - Kia J. Jackson
- Department of Psychiatry, Virginia Commonwealth University, 800 E. Leigh St, Biotech I, Suite 390A, Richmond, VA, 23219, USA
| | - Urslan Ahmad
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Broad St., Molecular Medicine Research Building, Box 980613, Richmond, VA, 23298, USA
| | - Nur T. Zaveri
- Astraea Therapeutics, LLC. 320 Logue Avenue, Mountain View, CA 94043
| | - J. Michael McIntosh
- Departments of Biology and Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy. Las Vegas, NV 89154-4004
| | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Broad St., Molecular Medicine Research Building, Box 980613, Richmond, VA, 23298, USA
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Broad St., Molecular Medicine Research Building, Box 980613, Richmond, VA, 23298, USA
| |
Collapse
|
36
|
Xi Z, Muldoon P, Wang X, Bi G, Damaj MI, Lichtman AH, Pertwee RG, Gardner EL. Δ 8 -Tetrahydrocannabivarin has potent anti-nicotine effects in several rodent models of nicotine dependence. Br J Pharmacol 2019; 176:4773-4784. [PMID: 31454413 PMCID: PMC6965695 DOI: 10.1111/bph.14844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Both types of cannabinoid receptors-CB1 and CB2 -regulate brain functions relating to addictive drug-induced reward and relapse. CB1 receptor antagonists and CB2 receptor agonists have anti-addiction efficacy, in animal models, against a broad range of addictive drugs. Δ9 -Tetrahydrocannabivarin (Δ9 -THCV)-a cannabis constituent-acts as a CB1 antagonist and a CB2 agonist. Δ8 -Tetrahydrocannabivarin (Δ8 -THCV) is a Δ9 -THCV analogue with similar combined CB1 antagonist/CB2 agonist properties. EXPERIMENTAL APPROACH We tested Δ8 -THCV in seven different rodent models relevant to nicotine dependence-nicotine self-administration, cue-triggered nicotine-seeking behaviour following forced abstinence, nicotine-triggered reinstatement of nicotine-seeking behaviour, acquisition of nicotine-induced conditioned place preference, anxiety-like behaviour induced by nicotine withdrawal, somatic withdrawal signs induced by nicotine withdrawal, and hyperalgesia induced by nicotine withdrawal. KEY RESULTS Δ8 -THCV significantly attenuated intravenous nicotine self-administration and both cue-induced and nicotine-induced relapse to nicotine-seeking behaviour in rats. Δ8 -THCV also significantly attenuated nicotine-induced conditioned place preference and nicotine withdrawal in mice. CONCLUSIONS AND IMPLICATIONS We conclude that Δ8 -THCV may have therapeutic potential for the treatment of nicotine dependence. We also suggest that tetrahydrocannabivarins should be tested for possible anti-addiction efficacy in a broader range of preclinical animal models, against other addictive drugs, and eventually in humans.
Collapse
Affiliation(s)
- Zheng‐Xiong Xi
- Molecular Targets and Medications Discovery Branch, Intramural Research ProgramNational Institute on Drug AbuseBaltimoreMarylandUSA
| | - Pretal Muldoon
- Department of Anatomy and NeurobiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Xiao‐Fei Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Guo‐Hua Bi
- Molecular Targets and Medications Discovery Branch, Intramural Research ProgramNational Institute on Drug AbuseBaltimoreMarylandUSA
| | - M. Imad Damaj
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Aron H. Lichtman
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Eliot L. Gardner
- Molecular Targets and Medications Discovery Branch, Intramural Research ProgramNational Institute on Drug AbuseBaltimoreMarylandUSA
| |
Collapse
|
37
|
Poulia N, Delis F, Brakatselos C, Lekkas P, Kokras N, Dalla C, Antoniou K. Escalating low-dose Δ 9 -tetrahydrocannabinol exposure during adolescence induces differential behavioral and neurochemical effects in male and female adult rats. Eur J Neurosci 2019; 52:2681-2693. [PMID: 31626712 DOI: 10.1111/ejn.14598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
Cannabinoid administration during adolescence affects various physiological processes, such as motor and affective response, cognitive-related functions and modulates neurotransmitter activity. Literature remains scant concerning the parallel examination of the effects of adolescent escalating low-dose Δ9 -tetrahydrocannabinol (Δ9 -THC) on the behavioral and plasticity profile of adult rats in both sexes. Herein, we investigated the long-term behavioral, neurochemical and neurobiological effects of adolescent escalating low Δ9 -THC doses in adult male and female rats. In adult males, adolescent low-dose Δ9 -THC exposure led to increased spontaneous locomotor activity, impaired behavioral motor habituation and defective short-term spatial memory, paralleled with decreased BDNF protein levels in the prefrontal cortex. In this brain area, serotonergic activity was increased, as depicted by the increased serotonin turnover rate, while the opposite effect was observed in the hippocampus, a region where SERT levels were enhanced by Δ9 -THC, compared with vehicle. In adult females, adolescent Δ9 -THC treatment led to decreased spontaneous vertical activity and impaired short-term spatial memory, accompanied by increased BDNF protein levels in the prefrontal cortex. Present findings emphasize the key role of adolescent escalating low Δ9 -THC exposure in the long-term regulation of motor response, spatial-related cognitive functions and neuroplasticity indices in adulthood. In this framework, these changes could, at a translational level, contribute to clinical issues suggesting the development of psychopathology in a sex-differentiated manner following Δ9 -THC exposure during adolescence.
Collapse
Affiliation(s)
- Nafsika Poulia
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Charalampos Brakatselos
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Panagiotis Lekkas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,First Department of Psychiatry, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
38
|
Nguyen T, Thomas BF, Zhang Y. Overcoming the Psychiatric Side Effects of the Cannabinoid CB1 Receptor Antagonists: Current Approaches for Therapeutics Development. Curr Top Med Chem 2019; 19:1418-1435. [PMID: 31284863 DOI: 10.2174/1568026619666190708164841] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
The Cannabinoid CB1 Receptor (CB1R) is involved in a variety of physiological pathways and has long been considered a golden target for therapeutic manipulation. A large body of evidence in both animal and human studies suggests that CB1R antagonism is highly effective for the treatment of obesity, metabolic disorders and drug addiction. However, the first-in-class CB1R antagonist/inverse agonist, rimonabant, though demonstrating effectiveness for obesity treatment and smoking cessation, displays serious psychiatric side effects, including anxiety, depression and even suicidal ideation, resulting in its eventual withdrawal from the European market. Several strategies are currently being pursued to circumvent the mechanisms leading to these side effects by developing neutral antagonists, peripherally restricted ligands, and allosteric modulators. In this review, we describe the progress in the development of therapeutics targeting the CB1R in the last two decades.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, NC 27709, United States
| | - Brian F Thomas
- Research Triangle Institute, Research Triangle Park, NC 27709, United States
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC 27709, United States
| |
Collapse
|
39
|
Abstract
Substance use disorder (SUD) is a major public health crisis worldwide, and effective treatment options are limited. During the past 2 decades, researchers have investigated the impact of a variety of pharmacological approaches to treat SUD, one of which is the use of medical cannabis or cannabinoids. Significant progress was made with the discovery of rimonabant, a selective CB1 receptor (CB1R) antagonist (also an inverse agonist), as a promising therapeutic for SUDs and obesity. However, serious adverse effects such as depression and suicidality led to the withdrawal of rimonabant (and almost all other CB1R antagonists/inverse agonists) from clinical trials worldwide in 2008. Since then, much research interest has shifted to other cannabinoid-based strategies, such as peripheral CB1R antagonists/inverse agonists, neutral CB1R antagonists, allosteric CB1R modulators, CB2R agonists, fatty acid amide hydrolase (FAAH) inhibitors, monoacylglycerol lipase (MAGL) inhibitors, fatty acid binding protein (FABP) inhibitors, or nonaddictive phytocannabinoids with CB1R or CB2R-binding profiles, as new therapeutics for SUDs. In this article, we first review recent progress in research regarding the endocannabinoid systems, cannabis reward versus aversion, and the underlying receptor mechanisms. We then review recent progress in cannabinoid-based medication development for the treatment of SUDs. As evidence continues to accumulate, neutral CB1R antagonists (such as AM4113), CB2R agonists (JWH133, Xie2-64), and nonselective phytocannabinoids (cannabidiol, β-caryophyllene, ∆9-tetrahydrocannabivarin) have shown great therapeutic potential for SUDs, as shown in experimental animals. Several cannabinoid-based medications (e.g., dronabinol, nabilone, PF-04457845) that entered clinical trials have shown promising results in reducing withdrawal symptoms in cannabis and opioid users.
Collapse
Affiliation(s)
- Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
40
|
Micale V, Drago F, Noerregaard PK, Elling CE, Wotjak CT. The Cannabinoid CB1 Antagonist TM38837 With Limited Penetrance to the Brain Shows Reduced Fear-Promoting Effects in Mice. Front Pharmacol 2019; 10:207. [PMID: 30949045 PMCID: PMC6435594 DOI: 10.3389/fphar.2019.00207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
Rimonabant was the first selective CB1 antagonist/inverse agonist introduced into clinical practice to treat obesity and metabolic-related disorders. It was withdrawn from market due to the notably increased rates of psychiatric side effects. We have evaluated TM38837, a novel, largely peripherally restricted CB1 antagonist, in terms of fear-promoting consequences of systemic vs. intracerebral injections. Different groups of male C57BL/6 N mice underwent auditory fear conditioning, followed by re-exposure to the tone. Mice were treated per os (p.o.) with TM38837 (10, 30, or 100 mg/kg), rimonabant (10 mg/kg; a brain penetrating CB1 antagonist/inverse agonist which served as a positive control), or vehicle, 2 h prior the tone presentation. Only the high dose of TM38837 (100 mg/kg) induced a significant increase in freezing behavior, similar to that induced by rimonabant (10 mg/kg) (p < 0.001). If injected into the brain both TM38837 (10 or 30 μg/mouse) and rimonabant (1 or 10 μg/mouse) caused a sustained fear response to the tone, which was more pronounced after rimonabant treatment. Taken together, TM38837 was at least one order of magnitude less effective in promoting fear responses than rimonabant. Given the equipotency of the two CB1 antagonists with regard to weight loss and metabolic syndrome-like symptoms in rodent obesity models, our results point to a critical dose range in which TM3887 might be beneficial for indications such as obesity and metabolic disorders with limited risk of fear-promoting effects.
Collapse
Affiliation(s)
- Vincenzo Micale
- Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.,National Institute Mental Health, Klecany, Czechia
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | | | - Carsten T Wotjak
- Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
41
|
Cannabinoid CB 1 receptor neutral antagonist AM4113 inhibits heroin self-administration without depressive side effects in rats. Acta Pharmacol Sin 2019; 40:365-373. [PMID: 29967454 DOI: 10.1038/s41401-018-0059-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022]
Abstract
Cannabinoid CB1 receptors (CB1Rs) have been shown to be a promising target in medication development for the treatment of addiction. However, clinical trials with SR141716A (rimonabant, a selective CB1R antagonist/inverse agonist) for the treatment of obesity and smoking cessation failed due to unwanted side effects, such as depression, anxiety, and suicidal tendencies. Recent preclinical studies suggest that the neutral CB1R antagonist AM4113 may retain the therapeutic anti-addictive effects of SR141716A in nicotine self-administration models and possibly has fewer unwanted side effects. However, little is known about whether AM4113 is also effective for other drugs of abuse, such as opioids and psychostimulants, and whether it produces depressive side effects similar to SR141716A in experimental animals. In this study, we demonstrated that systemic administration of AM4113 (3 and 10 mg/kg) dose-dependently inhibited the self-administration of intravenous heroin but not cocaine or methamphetamine, whereas SR141716A (3 and 10 mg/kg) dose-dependently inhibited the self-administration of heroin and methamphetamine but not cocaine. In the electrical brain-stimulation reward (BSR) paradigm, SR141716A (3 and 10 mg/kg) dose-dependently increased the BSR stimulation threshold (i.e., decreased the stimulation reward), but AM4113 had no effect on BSR at the same doses, suggesting that SR141716A may produce aversive effects while AM4113 may not. Together, these findings show that neutral CB1R antagonists such as AM4113 deserve further research as a new class of CB1R-based medications for the treatment of opioid addiction without SR141716A-like aversive effects.
Collapse
|
42
|
Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018; 9:84-104. [PMID: 30238023 PMCID: PMC6138948 DOI: 10.1016/j.ynstr.2018.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Stress-related substance use is a major challenge for treating substance use disorders. This selective review focuses on emerging pharmacotherapies with potential for reducing stress-potentiated seeking and consumption of nicotine, alcohol, marijuana, cocaine, and opioids (i.e., key phenotypes for the most commonly abused substances). I evaluate neuropharmacological mechanisms in experimental models of drug-maintenance and relapse, which translate more readily to individuals presenting for treatment (who have initiated and progressed). An affective/motivational systems model (three dimensions: valence, arousal, control) is mapped onto a systems biology of addiction approach for addressing this problem. Based on quality of evidence to date, promising first-tier neurochemical receptor targets include: noradrenergic (α1 and β antagonist, α2 agonist), kappa-opioid antagonist, nociceptin antagonist, orexin-1 antagonist, and endocannabinoid modulation (e.g., cannabidiol, FAAH inhibition); second-tier candidates may include corticotropin releasing factor-1 antagonists, serotonergic agents (e.g., 5-HT reuptake inhibitors, 5-HT3 antagonists), glutamatergic agents (e.g., mGluR2/3 agonist/positive allosteric modulator, mGluR5 antagonist/negative allosteric modulator), GABA-promoters (e.g., pregabalin, tiagabine), vasopressin 1b antagonist, NK-1 antagonist, and PPAR-γ agonist (e.g., pioglitazone). To address affective/motivational mechanisms of stress-related substance use, it may be advisable to combine agents with actions at complementary targets for greater efficacy but systematic studies are lacking except for interactions with the noradrenergic system. I note clinically-relevant factors that could mediate/moderate the efficacy of anti-stress therapeutics and identify research gaps that should be pursued. Finally, progress in developing anti-stress medications will depend on use of reliable CNS biomarkers to validate exposure-response relationships.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
43
|
Bozinoff N, Le Foll B. Understanding the implications of the biobehavioral basis of nicotine addiction and its impact on the efficacy of treatment. Expert Rev Respir Med 2018; 12:793-804. [PMID: 30092681 DOI: 10.1080/17476348.2018.1507736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Tobacco use remains the leading cause of preventable death in the United States. There are efficacious behavioral and pharmacological options for smoking cessation including three FDA approved therapies - nicotine replacement therapy, varenicline and bupropion. Nevertheless, uptake of smoking cessation treatments continues to be poor and there is a need for novel smoking cessation treatments. Areas covered: This article reviews the biobehavioral basis of nicotine addiction, its implications for smoking cessation treatments, the various neurotransmitter systems involved in nicotine addictive effects, and their potential therapeutic value. Included are discussions around the role of genetic factors in predicting response to pharmacotherapy and what we know about appropriate application of pharmacotherapy and behavioral interventions for tobacco use disorder. The evidence for harm reduction measures in individuals who are not willing or able to quit smoking is also reviewed. Expert commentary: Many neurotransmitter system targets have been investigated as a result of our understanding of the underlying neurobiology of tobacco use disorder, and there remain important targets that have yet to be fully explored. rTMS or combination therapies are proposed as possible novel strategies to improve smoking cessation.
Collapse
Affiliation(s)
- Nikki Bozinoff
- a Department of Family and Community Medicine , University of Toronto , Toronto , Canada.,b Addiction Medicine Service, Acute Care Program , Centre for Addiction and Mental Health , Toronto , Canada
| | - Bernard Le Foll
- a Department of Family and Community Medicine , University of Toronto , Toronto , Canada.,b Addiction Medicine Service, Acute Care Program , Centre for Addiction and Mental Health , Toronto , Canada.,c Department of Pharmacology and Toxicology, Psychiatry, Institute of Medical Sciences , University of Toronto , Toronto , Canada.,d Centre for Addiction and Mental Health , Campbell Family Mental Health Research Institute, CAMH , Toronto , Canada.,e Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , Canada
| |
Collapse
|
44
|
Abstract
Cannabis (marijuana) is a drug product derived from the plant Cannabis sativa. Cannabinoid is a general term for all chemical constituents of the cannabis plant. Legalization of marijuana in numerous US states, the availability of cannabis of higher potency, and the emergence of synthetic cannabinoids may have contributed to increased demand for related medical services. The most effective available treatments for cannabis use disorder are psychosocial approaches. There is no pharmacotherapy approved treatment. This article reviews the current state of knowledge regarding effective treatments for cannabis use disorder.
Collapse
Affiliation(s)
- Annie Lévesque
- Department of Psychiatry, Mount Sinai West Hospital, 1000 10th Avenue, Suite 8C-02, New York, NY 10019, USA.
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH), 33 Russell Street, Toronto, Ontario M5S 2S1, Canada; Addiction Division, Addiction Medicine Service, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada; Department of Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Family and Community Medicine, Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
45
|
Endocannabinoids in Body Weight Control. Pharmaceuticals (Basel) 2018; 11:ph11020055. [PMID: 29849009 PMCID: PMC6027162 DOI: 10.3390/ph11020055] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of body weight is fundamental to maintain one's health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands. To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.
Collapse
|
46
|
Sabioni P, Le Foll B. Psychosocial and pharmacological interventions for the treatment of cannabis use disorder. F1000Res 2018; 7:173. [PMID: 29497498 PMCID: PMC5811668 DOI: 10.12688/f1000research.11191.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 11/24/2022] Open
Abstract
Cannabis use has been continuously increasing, and cannabis use disorder (CUD) has become a public health issue. Some psychosocial interventions have demonstrated the ability to reduce cannabis use; however, there are no pharmacotherapies approved for the treatment of CUD. Some drugs have shown limited positive effects on use and withdrawal symptoms, but no controlled studies have been able to show strong and persistent effects on clinically meaningful outcomes. The aim of this review is to synthesize the evidence from the available literature regarding the effectiveness of psychosocial and pharmacological treatments for CUD among adults (that is, 18 years old or older). An analysis of the evidence shows that the current best psychosocial intervention to reduce cannabis use is the combination of motivational enhancement therapy and cognitive-behavioral therapy, preferably accompanied by a contingency management approach. In regard to pharmacological interventions, there are mostly unclear findings. Some drugs, such as CB1 agonists, gabapentin, and N-acetylcysteine, have been shown to produce improvements in some symptoms of CUD in single studies, but these have not been replicated. Other classes of medications, including antidepressants and antipsychotics, have been unsuccessful in producing such effects. There is an imminent need for more clinical trials to develop more effective treatments for CUD.
Collapse
Affiliation(s)
- Pamela Sabioni
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, Ontario , M5S 2S1, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, Ontario , M5S 2S1, Canada.,Addiction Medicine Service, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Family and Community Medicine, Pharmacology and Toxicology, Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
47
|
The Current State of Pharmacological Treatments for Cannabis Use Disorder and Withdrawal. Neuropsychopharmacology 2018; 43:173-194. [PMID: 28875989 PMCID: PMC5719115 DOI: 10.1038/npp.2017.212] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023]
Abstract
Cannabis use disorder (CUD) commonly occurs and carries a notable economic and functional burden at both individual and societal levels. While there are no clearly efficacious medication treatments for CUD, 20 years of committed and high-quality research in the human laboratory and clinical settings have resulted in medications with demonstrated effectiveness in the treatment of cannabis withdrawal, the ability to reduce cannabis use, and results that point to promising future work. The current state of pharmacology research for CUD highlights the need to consider particular characteristics of patients, such as gender, impulsivity, and severity of cannabis use, when selecting a medication in the off-label treatment of CUD or cannabis withdrawal. As a field, the body of work also exposes some areas in need of improvement in study design, selection of outcome measures, interpretation of results, and the overall process of evaluating candidate medications. Coming to a consensus as a field and addressing these gaps in future research will likely lend itself to further advances in improving the lives of patients with CUD.
Collapse
|
48
|
Panlilio LV, Justinova Z. Preclinical Studies of Cannabinoid Reward, Treatments for Cannabis Use Disorder, and Addiction-Related Effects of Cannabinoid Exposure. Neuropsychopharmacology 2018; 43:116-141. [PMID: 28845848 PMCID: PMC5719102 DOI: 10.1038/npp.2017.193] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022]
Abstract
Cannabis use has become increasingly accepted socially and legally, for both recreational and medicinal purposes. Without reliable information about the effects of cannabis, people cannot make informed decisions regarding its use. Like alcohol and tobacco, cannabis can have serious adverse effects on health, and some people have difficulty discontinuing their use of the drug. Many cannabis users progress to using and becoming addicted to other drugs, but the reasons for this progression are unclear. The natural cannabinoid system of the brain is complex and involved in many functions, including brain development, reward, emotion, and cognition. Animal research provides an objective and controlled means of obtaining information about: (1) how cannabis affects the brain and behavior, (2) whether medications can be developed to treat cannabis use disorder, and (3) whether cannabis might produce lasting changes in the brain that increase the likelihood of becoming addicted to other drugs. This review explains the tactics used to address these issues, evaluates the progress that has been made, and offers some directions for future research.
Collapse
Affiliation(s)
- Leigh V Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA
| | - Zuzana Justinova
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA
| |
Collapse
|
49
|
Abstract
INTRODUCTION Substance use disorders are a group of chronic relapsing disorders of the brain, which have massive public health and societal impact. In some disorders (e.g., heroin/prescription opioid addictions) approved medications have a major long-term benefit. For other substances (e.g., cocaine, amphetamines and cannabis) there are no approved medications, and for alcohol there are approved treatments, which are not in wide usage. Approved treatments for tobacco use disorders are available, and novel medications are also under study. Areas covered: Medication-based approaches which are in advanced preclinical stages, or which have reached proof-of concept clinical laboratory studies, as well as clinical trials. Expert opinion: Current challenges involve optimizing translation between preclinical and clinical development, and between clinical laboratory studies to therapeutic clinical trials. Comorbidities including depression or anxiety are challenges for study design and analysis. Improved pharmacogenomics, biomarker and phenotyping approaches are areas of interest. Pharmacological mechanisms currently under investigation include modulation of glutamatergic, GABA, vasopressin and κ-receptor function, as well as inhibition of monoamine re-uptake. Other factors that affect potential market size for emerging medications include stigma, availability of treatment settings, adoption by clinicians, and the prevalence of persons with SUD who are not actively treatment-seeking.
Collapse
Affiliation(s)
- Eduardo R Butelman
- a Laboratory in the Biology of Addictive Diseases , The Rockefeller University , New York , NY , USA
| | - Mary Jeanne Kreek
- a Laboratory in the Biology of Addictive Diseases , The Rockefeller University , New York , NY , USA
| |
Collapse
|
50
|
Balla A, Dong B, Shilpa BM, Vemuri K, Makriyannis A, Pandey SC, Sershen H, Suckow RF, Vinod KY. Cannabinoid-1 receptor neutral antagonist reduces binge-like alcohol consumption and alcohol-induced accumbal dopaminergic signaling. Neuropharmacology 2017; 131:200-208. [PMID: 29109060 DOI: 10.1016/j.neuropharm.2017.10.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 01/16/2023]
Abstract
Binge alcohol (ethanol) drinking is associated with profound adverse effects on our health and society. Rimonabant (SR141716A), a CB1 receptor inverse agonist, was previously shown to be effective for nicotine cessation and obesity. However, studies using rimonabant were discontinued as it was associated with an increased risk of depression and anxiety. In the present study, we examined the pharmacokinetics and effects of AM4113, a novel CB1 receptor neutral antagonist on binge-like ethanol drinking in C57BL/6J mice using a two-bottle choice drinking-in-dark (DID) paradigm. The results indicated a slower elimination of AM4113 in the brain than in plasma. AM4113 suppressed ethanol consumption and preference without having significant effects on body weight, ambulatory activity, preference for tastants (saccharin and quinine) and ethanol metabolism. AM4113 pretreatment reduced ethanol-induced increase in dopamine release in nucleus accumbens. Collectively, these data suggest an important role of CB1 receptor-mediated regulation of binge-like ethanol consumption and mesolimbic dopaminergic signaling, and further points to the potential utility of CB1 neutral antagonists for the treatment of binge ethanol drinking.
Collapse
Affiliation(s)
- Andrea Balla
- Department of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States
| | - Bin Dong
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States
| | - Borehalli M Shilpa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States
| | - Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, United States
| | | | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Henry Sershen
- Department of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States; Department of Psychiatry, NYU Langone Medical Center, New York, NY, United States
| | - Raymond F Suckow
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States; New York State Psychiatric Institute, New York, United States; Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - K Yaragudri Vinod
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States; Emotional Brain Institute, Orangeburg, New York, NY, United States; Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, NY, United States.
| |
Collapse
|