1
|
Gregory-Flores A, Bonet IJ, Desaivre S, Levine JD, McHardy SF, de Kraker HC, Clanton NA, LoCoco PM, Russell NM, Fleischer C, Messing RO, Marinelli M. A small molecule PKCε inhibitor reduces hyperalgesia induced by paclitaxel or opioid withdrawal. JCI Insight 2025; 10:e186805. [PMID: 40260913 PMCID: PMC12016938 DOI: 10.1172/jci.insight.186805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/25/2025] [Indexed: 04/24/2025] Open
Abstract
The enzyme protein kinase C ε (PKCε) plays an important role in pain signaling and represents a promising therapeutic target for the treatment of chronic pain. We designed and generated a small molecule inhibitor of PKCε, CP612, and examined its effect in a rodent model of chemotherapy-induced neuropathic pain produced by paclitaxel, which does not respond well to current therapeutics. In addition, many patients with chronic pain use opiates, which over time can become ineffective, and attempts to discontinue them can increase pain thereby promoting sustained opioid use. Therefore, we also investigated if CP612 alters pain due to opioid withdrawal. We found that CP612 attenuated hyperalgesia produced by paclitaxel, and it both prevented and reversed hyperalgesia induced by opioid withdrawal. It was not self-administered and did not affect morphine self-administration. These findings suggest that inhibition of PKCε is an effective, nonaddictive strategy to treat chemotherapy-induced neuropathic pain, with the added benefit of preventing increases in pain that occur as opioid treatment is discontinued. This latter property could benefit individuals with chronic pain who find it difficult to discontinue opioids.
Collapse
Affiliation(s)
- Adriana Gregory-Flores
- Institute for Neuroscience and
- Department of Neuroscience and the Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, USA
| | - Ivan J.M. Bonet
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, and
- Department of Medicine, Division of Neuroscience, UCSF, San Francisco, California, USA
| | - Stève Desaivre
- Department of Neuroscience and the Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, USA
| | - Jon D. Levine
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, and
- Department of Medicine, Division of Neuroscience, UCSF, San Francisco, California, USA
| | | | | | - Nicholas A. Clanton
- Voelcker Preclinical Pharmacology Core, Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Peter M. LoCoco
- Voelcker Preclinical Pharmacology Core, Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA
| | | | - Caleb Fleischer
- Department of Neuroscience and the Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, USA
| | - Robert O. Messing
- Institute for Neuroscience and
- Department of Neuroscience and the Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, USA
- Division of Pharmacology and Toxicology, College of Pharmacy
- Department of Neurology and the Mulva Clinic for the Neurosciences, Dell Medical School, and
| | - Michela Marinelli
- Institute for Neuroscience and
- Department of Neuroscience and the Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, USA
- Division of Pharmacology and Toxicology, College of Pharmacy
- Department of Neurology and the Mulva Clinic for the Neurosciences, Dell Medical School, and
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
2
|
Harris AC, Muelken P, Liu SX, Smethells JR, LeSage MG, Gewirtz JC. Magnitude and predictors of elasticity of demand for morphine are similar in male and female rats. Front Behav Neurosci 2024; 18:1443364. [PMID: 39267985 PMCID: PMC11390466 DOI: 10.3389/fnbeh.2024.1443364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Sex differences in vulnerability to opioid use disorder (OUD) have been reported in some clinical and preclinical studies, but findings are mixed and further research is needed in this area. The goal of this study was to compare elasticity of demand (reinforcement efficacy) in an i.v. morphine self-administration (SA) model in male and female rats using a translationally relevant behavioral economics approach. Rate of acquisition and predictors of individual differences in demand (e.g., cumulative morphine infusions during acquisition) were also evaluated in both sexes. Materials methods and results Acquisition of morphine SA (0.4 mg/kg/infusion) under a fixed ratio (FR) 1 schedule of reinforcement was slower and infusions earned were lower in females than in males (n = 30-31/sex), but infusions earned did not differ between sexes during the FR 2 and FR 3 phases of acquisition. Increases in the FR response requirement across sessions during demand testing (FR 1-FR 96) resulted in a progressive reduction in morphine infusions in both sexes. Morphine consumption was well-described by an exponential demand function in both sexes and was associated with considerable individual vulnerability. There were no sex differences in elasticity of demand (rate of decline in morphine consumption with increasing price) or intensity of demand (consumption at zero price). A higher number of infusions earned during the FR 2 and FR 3 phases of acquisition and greater maximum response rates during demand testing were associated with lower demand elasticity (i.e., greater reinforcing efficacy) in both males and females, whereas other relationships were sex-specific (e.g., higher intensity of demand was associated with lower elasticity of demand in males but not in females). Conclusion Our findings indicate similar elasticity of demand and predictors of individual differences in demand for morphine in male and female rats, although sex differences were observed in initial rate of acquisition and in some correlations between morphine SA measures. These data are consistent with findings of similar OUD vulnerability in males and females in some human and animal studies.
Collapse
Affiliation(s)
- Andrew C Harris
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Peter Muelken
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Shirelle X Liu
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - John R Smethells
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Mark G LeSage
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
3
|
Acupuncture Inhibits Morphine Induced-Immune Suppress via Antioxidant System. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7971801. [PMID: 36317105 PMCID: PMC9617706 DOI: 10.1155/2022/7971801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/27/2022] [Indexed: 11/05/2022]
Abstract
Objectives A powerful analgesic called Morphine causes addiction behaviors and immune suppression as a potential oxidative stressor. Acupuncture showed to inhibit oxidative stress-induced hepatic damage, regulate reactive oxygen species, and attenuate morphine addiction behaviors. Therefore, we investigated the potential effects of acupuncture on morphine-induced immune suppression. Materials and Methods Rats received morphine intravenously through implanted catheters for 3, 7, or 21 days to determine the optimal condition for morphine-induced immune suppression. Second, we examined whether intravenous (iv.) or intraperitoneal (ip.) administration produced different results. Third, the effects of acupuncture in rats who received morphine for 21 days were investigated. Spleen and submandibular lymph node (S-LN) weights and natural killer (NK) cell activity were measured, and the white pulp diameter, total and cortical spleen thicknesses, and the number of lymphoid follicles in S-LNs were examined. The number of immunoreactive cells was also measured. Results Decreased organ weights and increased atrophic changes were observed as morphine-induced immune suppression. However, dose-dependent increased immune suppression was not observed between 5.0 mg/kg and 10.0 mg/kg of morphine. And, 3-day withdrawal did not affect. Similar histopathological findings were observed in 5.0 and 10.0 ip. rats when compared to equal dosages of iv., respectively. The morphine induced-immune suppression evidenced by spleen and left S-LN weights, splenic NK cell activities, histopathological findings, and the immunoreactive cell number were normalized by acupuncture. Conclusion These results indicate that acupuncture inhibits morphine-induced immune suppression, maybe via antioxidative action.
Collapse
|
4
|
Marrero-Cristobal G, Gelpi-Dominguez U, Morales-Silva R, Alvarado-Torres J, Perez-Torres J, Perez-Perez Y, Sepulveda-Orengo M. Aerobic exercise as a promising nonpharmacological therapy for the treatment of substance use disorders. J Neurosci Res 2022; 100:1602-1642. [PMID: 34850988 PMCID: PMC9156662 DOI: 10.1002/jnr.24990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Despite the prevalence and public health impact of substance use disorders (SUDs), effective long-term treatments remain elusive. Aerobic exercise is a promising, nonpharmacological treatment currently under investigation as a strategy for preventing drug relapse. Aerobic exercise could be incorporated into the comprehensive treatment regimens for people with substance abuse disorders. Preclinical studies of SUD with animal models have shown that aerobic exercise diminishes drug-seeking behavior, which leads to relapse, in both male and female rats. Nevertheless, little is known regarding the effects of substance abuse-induced cellular and physiological adaptations believed to be responsible for drug-seeking behavior. Accordingly, the overall goal of this review is to provide a summary and an assessment of findings to date, highlighting evidence of the molecular and neurological effects of exercise on adaptations associated with SUD.
Collapse
Affiliation(s)
| | - Ursula Gelpi-Dominguez
- School of Behavioral and Brain Sciences, Ponce Health Sciences University, Ponce, PR, USA
| | - Roberto Morales-Silva
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - John Alvarado-Torres
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Joshua Perez-Torres
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Yobet Perez-Perez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Marian Sepulveda-Orengo
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| |
Collapse
|
5
|
Elam HB, Donegan JJ, Hsieh J, Lodge DJ. Gestational buprenorphine exposure disrupts dopamine neuron activity and related behaviors in adulthood. eNeuro 2022; 9:ENEURO.0499-21.2022. [PMID: 35851301 PMCID: PMC9337603 DOI: 10.1523/eneuro.0499-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Opioid misuse among pregnant women is rapidly increasing in the United States. The number of maternal opioid-related diagnoses increased by 131% in the last ten years, resulting in an increased number of infants exposed to opioids in utero and a subsequent increase in infants developing neonatal abstinence syndrome (NAS). The most prescribed treatment to combat maternal opioid use disorder is buprenorphine, a partial μ-opioid receptor agonist and κ-opioid receptor antagonist. Buprenorphine treatment effectively reduces NAS but has been associated with disrupted cortical development and neurodevelopmental consequences in childhood. Less is known about the long-term neurodevelopmental consequences following buprenorphine exposure in utero Previous research has shown that gestational buprenorphine exposure can induce anxiety- and depressive-like phenotypes in adult rats, suggesting that exposure to buprenorphine in utero may render individuals more susceptible to psychiatric illness in adulthood. A common pathology observed across multiple psychiatric illnesses is dopamine system dysfunction. Here, we administered the highly-abused opioid, oxycodone (10 mg/kg, i.p.) or a therapeutic used to treat opioid use disorder, buprenorphine (1 mg/kg, i.p) to pregnant Sprague Dawley rats from gestational day 11 through 21, then examined neurophysiological alterations in the mesolimbic dopamine system and dopamine-dependent behaviors in adult offspring. We found that gestational exposure to buprenorphine or oxycodone increases dopamine neuron activity in adulthood. Moreover, prenatal buprenorphine exposure disrupts the afferent regulation of dopamine neuron activity in the ventral tegmental area (VTA). Taken together, we posit that gestational buprenorphine or oxycodone exposure can have profound effects on the mesolimbic dopamine system in adulthood.Significance StatementThe opioid epidemic in the United States is a growing problem that affects people from all demographics, including pregnant women. In 2017, nearly 21,000 pregnant women reported misusing opioids during pregnancy, which can lead to many physiological and neurodevelopmental complications in infants. To combat illicit opioid use during pregnancy, buprenorphine is the priority treatment option, as it reduces illicit opioid use and alleviates symptoms of neonatal abstinence syndrome in infants. However, less is known about the long-term neurophysiological consequences of in utero opioid or buprenorphine exposure. Here, we demonstrate that both oxycodone and buprenorphine exposure, in utero, can result in aberrant dopamine system function in adult rats. These results provide evidence of potential long-lasting effects of opioid exposure during development.
Collapse
Affiliation(s)
- Hannah B Elam
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Jennifer J Donegan
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Psychiatry and Behavioral Sciences, Dell Medical School at UT Austin, Austin, TX, USA
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, USA
| |
Collapse
|
6
|
Nass SR, Ohene-Nyako M, Hahn YK, Knapp PE, Hauser KF. Neurodegeneration Within the Amygdala Is Differentially Induced by Opioid and HIV-1 Tat Exposure. Front Neurosci 2022; 16:804774. [PMID: 35600626 PMCID: PMC9115100 DOI: 10.3389/fnins.2022.804774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Opioid use disorder (OUD) is a critical problem that contributes to the spread of HIV and may intrinsically worsen neuroHIV. Despite the advent of combined antiretroviral therapies (cART), about half of persons infected with HIV (PWH) experience cognitive and emotional deficits that can be exacerbated by opioid abuse. HIV-1 Tat is expressed in the central nervous system (CNS) of PWH on cART and is thought to contribute to neuroHIV. The amygdala regulates emotion and memories associated with fear and stress and is important in addiction behavior. Notwithstanding its importance in emotional saliency, the effects of HIV and opioids in the amygdala are underexplored. To assess Tat- and morphine-induced neuropathology within the amygdala, male Tat transgenic mice were exposed to Tat for 8 weeks and administered saline and/or escalating doses of morphine twice daily (s.c.) during the last 2 weeks of Tat exposure. Eight weeks of Tat exposure decreased the acoustic startle response and the dendritic spine density in the basolateral amygdala, but not the central nucleus of the amygdala. In contrast, repeated exposure to morphine alone, but not Tat, increased the acoustic startle response and whole amygdalar levels of amyloid-β (Aβ) monomers and oligomers and tau phosphorylation at Ser396, but not neurofilament light chain levels. Co-exposure to Tat and morphine decreased habituation and prepulse inhibition to the acoustic startle response and potentiated the morphine-induced increase in Aβ monomers. Together, our findings indicate that sustained Tat and morphine exposure differentially promote synaptodendritic degeneration within the amygdala and alter sensorimotor processing.
Collapse
Affiliation(s)
- Sara R. Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Kurt F. Hauser,
| |
Collapse
|
7
|
Abstract
The failure of traditional antidepressant medications to adequately target cognitive impairment is associated with poor treatment response, increased risk of relapse, and greater lifetime disability. Opioid receptor antagonists are currently under development as novel therapeutics for major depressive disorder (MDD) and other stress-related illnesses. Although it is known that dysregulation of the endogenous opioid system is observed in patients diagnosed with MDD, the impact of opioidergic neurotransmission on cognitive impairment has not been systematically evaluated. Here we review the literature indicating that opioid manipulations can alter cognitive functions in humans. Furthermore, we detail the preclinical studies that demonstrate the ability of mu-opioid receptor and kappa-opioid receptor ligands to modulate several cognitive processes. Specifically, this review focuses on domains within higher order cognitive processing, including attention and executive functioning, which can differentiate cognitive processes influenced by motivational state.
Collapse
|
8
|
Ruda-Kucerova J, Babinska Z, Stark T, Micale V. Suppression of Methamphetamine Self-Administration by Ketamine Pre-treatment Is Absent in the Methylazoxymethanol (MAM) Rat Model of Schizophrenia. Neurotox Res 2017; 32:121-133. [PMID: 28421529 DOI: 10.1007/s12640-017-9718-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 12/23/2022]
Abstract
Ketamine may prove to be a potential candidate in treating the widespread drug addiction/substance abuse epidemic among patients with schizophrenia. Clinical studies have shown ketamine to reduce cocaine and heroin cravings. However, the use of ketamine remains controversial as it may exacerbate the symptoms of schizophrenia. Therefore, the aim of this study is to characterize the effects of ketamine on drug addiction in schizophrenia using the methylazoxymethanol (MAM) acetate rat model on operant IV methamphetamine (METH) self-administration. MAM was administered intraperitoneally (22 mg/kg) on gestational day 17. Locomotor activity test and later IV self-administration (IVSA) were then performed in the male offspring followed by a period of forced abstinence and relapse of METH taking. After reaching stable intakes in the relapse phase, ketamine (5 mg/kg) was administered intraperitoneally 30 min prior to the self-administration session. As documented previously, the MAM rats showed a lack of habituation in the locomotor activity test but developed stable maintenance of METH self-administration with no difference in operant behaviour to control animals. Results show that ketamine treatment significantly reduced the METH intake in the control animals but not in MAM animals. Ketamine effect on METH self-administration may be explained by increased glutamatergic signalling in the prefrontal cortex caused by the N-methyl-D-aspartate antagonism and disinhibition of GABA interneurons which was shown to be impaired in the MAM rats. This mechanism may at least partly explain the clinically proven anti-craving potential of ketamine and allow development of more specific anti-craving medications with fewer risks.
Collapse
Affiliation(s)
- Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Zuzana Babinska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vincenzo Micale
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Park TY, Nishida KS, Wilson CM, Jaiswal S, Scott J, Hoy AR, Selwyn RG, Dardzinski BJ, Choi KH. Effects of isoflurane anesthesia and intravenous morphine self-administration on regional glucose metabolism ([ 18 F]FDG-PET) of male Sprague-Dawley rats. Eur J Neurosci 2017; 45:922-931. [PMID: 28196306 DOI: 10.1111/ejn.13542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 01/22/2023]
Abstract
Although certain drugs of abuse are known to disrupt brain glucose metabolism (BGluM), the effects of opiates on BGluM are not well characterized. Moreover, preclinical positron emission tomography (PET) studies anesthetize animals during the scan, which limits clinical applications. We investigated the effects of (i) isoflurane anesthesia and (ii) intravenous morphine self-administration (MSA) on BGluM in rats. Jugular vein cannulated adult male Sprague-Dawley rats self-administered either saline (SSA) or morphine (0.5 mg/kg/infusion, 4 h/day for 12 days). All animals were scanned twice with [18 F]-fluoro-deoxy-glucose (FDG)-PET/CT at a baseline and at 2-day withdrawal from self-administration. After the IV injection of FDG, one batch of animals (n = 14) was anesthetized with isoflurane and the other batch (n = 16) was kept awake during the FDG uptake (45 min). After FDG uptake, all animals were anesthetized in order to perform a PET/CT scan (30 min). Isoflurane anesthesia, as compared to the awake condition, reduced BGluM in the olfactory, cortex, thalamus, and basal ganglia, while increasing BGluM in the midbrain, hypothalamus, hippocampus, and cerebellum. Morphine self-administered animals exhibited withdrawal signs (piloerection and increased defecation), drug seeking, and locomotor stimulation to morphine (0.5 mg/kg) during the 2 day withdrawal. The BGluM in the striatum was increased in the MSA group as compared to the SSA group; this effect was observed only in the isoflurane anesthesia, not the awake condition. These findings suggest that the choice of the FDG uptake condition may be important in preclinical PET studies and increased BGluM in the striatum may be associated with opiate seeking in withdrawal.
Collapse
Affiliation(s)
- Thomas Y Park
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kevin S Nishida
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Colin M Wilson
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Radiology, University of New Mexico, Albuquerque, NM, USA
| | - Shalini Jaiswal
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jessica Scott
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Andrew R Hoy
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Reed G Selwyn
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Radiology, University of New Mexico, Albuquerque, NM, USA.,Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Bernard J Dardzinski
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kwang H Choi
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|