1
|
Böswald LF, Matzek D, von La Roche D, Stahr B, Bawidamann P, Popper B. Investigations on Xenopus laevis body composition and feeding behavior in a laboratory setting. Sci Rep 2024; 14:9517. [PMID: 38664518 PMCID: PMC11045782 DOI: 10.1038/s41598-024-59848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The African clawed frog, Xenopus laevis, has been used as a laboratory animal for decades in many research areas. However, there is a lack of knowledge about the nutritional physiology of this amphibian species and the feeding regimen is not standardized. The aim of the present study was to get more insights into the nutrient metabolism and feeding behavior of the frogs. In Trial 1, adult female X. laevis were fed either a Xenopus diet or a fish feed. After 4 weeks, they were euthanized, weighed, measured for morphometrics and dissected for organ weights and whole-body nutrient analysis. There were no significant differences between the diet groups regarding the allometric data and nutrient contents. The ovary was the major determinant of body weight. Body fat content increased with body weight as indicator of energy reserves. In Trial 2, 40 adult female frogs were monitored with a specifically developed digital tracking system to generate heat-maps of their activity before and up to 25 min after a meal. Three diets (floating, sinking, floating & sinking) were used. The main feed intake activity was fanning the feed into the mouth, peaking until 20 min after the meal. The different swimming characteristics of the diets thereby influenced the activity of the animals. Our dataset helps to adjust the feeding needs to the physical composition and also to meet the natural behavioral patterns of feed intake as a prerequisite of animal wellbeing and animal welfare in a laboratory setting.
Collapse
Affiliation(s)
- Linda F Böswald
- Chair for Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr 8, 85764, Oberschleißheim, Germany
- Biomedical Center, Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany
| | - Dana Matzek
- Biomedical Center, Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany
| | - Dominik von La Roche
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539, München, Germany
| | - Bianca Stahr
- Biomedical Center, Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany
| | - Pascal Bawidamann
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539, München, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
2
|
Ma KG, Lieggi C, Lertpiriyapong K, Afolalu AA, Riedel ER, Lipman NS. Successful Rearing of Nutritionally Supplemented Rotifers ( Brachionus plicatilis) at Reduced Salinity for Zebrafish ( Danio rerio) Polyculture. Zebrafish 2023; 20:250-259. [PMID: 38117218 PMCID: PMC10733754 DOI: 10.1089/zeb.2023.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Rotifers, Brachionus plicatilis, are a valuable first exogenous feed for zebrafish because they can provide continuous nutrition for growing zebrafish larvae when used in a rotifer-zebrafish polyculture. Typically cultured at high salinities (>10 ppt), B. plicatilis are temporarily immobilized when moved to lower salinities (5 ppt) used for polycultures, decreasing their accessibility and attractiveness to the larvae. The nutritional value of rotifers varies based on their diet, typically live algae, which has limited nutritional value and may pose biosecurity risks. After confirming that rotifers consume and can reproduce when fed an irradiated, processed larval fish diet (PD), they were reared at 5 or 15 ppt, and fed various combinations of an algae mix and/or PD. Population densities and percentages of egg-bearing rotifers were quantified daily until the population density plateaued, and then their nutritional value was assessed. Results indicated that rotifers thrived at both salinities. Those fed PD were successfully maintained at >500 rotifers per mL and contained a greater ω-6/ω-3 fatty acid ratio. Our findings indicate that enriching rotifers with PD raised at 5 ppt can potentially eliminate rotifer immobilization in polyculture, while providing a nutritious, attractive diet for zebrafish larvae and decreasing biosecurity risks.
Collapse
Affiliation(s)
- Kathleen G.L. Ma
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Christine Lieggi
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Kvin Lertpiriyapong
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Adedeji A. Afolalu
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Elyn R. Riedel
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Neil S. Lipman
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Wu D, Fan Z, Li J, Zhang Y, Xu Q, Wang L, Wang L. Low Protein Diets Supplemented With Alpha-Ketoglutarate Enhance the Growth Performance, Immune Response, and Intestinal Health in Common Carp ( Cyprinus carpio). Front Immunol 2022; 13:915657. [PMID: 35720284 PMCID: PMC9200961 DOI: 10.3389/fimmu.2022.915657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
To investigate the effects of alpha-ketoglutarate (AKG) supplementation in a low protein (LP) diet on the growth performance, immune response, and intestinal health of common carp (Cyprinus carpio), 600 carp were randomly divided into five dietary groups: a normal protein (NP) diet containing 32% crude protein, an LP diet formulated with 28% crude protein, and LP with AKG at 0.4%, 0.8%, and 1.2% (dry matter). After an 8-week trial period, the results demonstrated that an LP diet led to a decrease in performance, immune response, and intestinal barrier function. Compared with the LP group, the final body weight and weight gain rate in the LP+0.4% AKG group were significantly higher, the feed conversion ratio was significantly decreased with the addition of 0.4% and 0.8% AKG. The supplementation with 0.4% and 0.8% AKG markedly increased the activities of T-SOD and GSH-Px, as well as the expression levels of GPX1a and GPX1b relative to the LP group, whereas the MDA content was significantly decreased in the LP+0.4% AKG group. In addition, the expression levels of tight junctions including claudin-3, claudin-7, ZO-1, and MLCK were significantly up-regulated in the LP+0.4% AKG group, and the relative expression levels of the pro-inflammatory factors IL-1β and IL-6α were significantly lower with the addition of 0.4%, 0.8%, and 1.2% AKG. Moreover, the abundance of Proteobacteria in the LP+0.4% AKG group was lower than that in the LP group, and the abundance of Firmicutes and Fusobacteria was higher at the phylum level. The abundance of Citrobacter in the LP+0.4% AKG group was decreased compared to the LP group, while the abundance of Aeromonas was increased at the genus level. In short, the effects of AKG on the intestinal health of the common carp were systematically and comprehensively evaluated from the perspectives of intestinal physical barrier, chemical barrier, biological barrier, and immune barrier. We found that an LP diet supplemented with 0.4% AKG was beneficial to the growth performance and intestinal health of common carp.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Qiyou Xu
- School of Life Science, Huzhou University, Huzhou, China
| | - Liang Wang
- AHP Application Research Institute, Weifang Addeasy Bio-Technology Co., Ltd, Weifang, China
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
4
|
Cheleuitte-Nieves C, Lipman NS. Improving Replicability, Reproducibility, And Reliability In Preclinical Research: A Shared Responsibility. ILAR J 2020. [DOI: 10.1093/ilar/ilaa009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Reproducible and reliable scientific investigation depends on the identification and consideration of various intrinsic and extrinsic factors that may affect the model system used. The impact of these factors must be managed during all phases of a study: planning, execution, and reporting. The value of in vivo (animal) research has come under increasing scrutiny over the past decade because of multiple reports documenting poor translatability to human studies. These failures have been attributed to various causes, including poor study design and execution as well as deficiencies in reporting. It is important to recognize that achieving reproducible and reliable preclinical research results is a joint responsibility that requires a partnership between the investigative team and the animal care and use program staff. The myriad of intrinsic factors, such as species, strain/substrain, age, sex, physiologic and health status, and extrinsic factors, including temperature, humidity, lighting, housing system, and diet, need to be recognized and managed during study planning and execution, as they can influence animal physiology and biological response. Of equal importance is the need to document and report these details. The ARRIVE and PREPARE guidelines were developed by concerned scientists, veterinarians, statisticians, journal editors, and funding agencies to assist investigative teams and scientific journals manage and report on intrinsic and extrinsic factors to improve reproducibility and reliability. This issue of the ILAR Journal will focus on the various extrinsic factors that have been recognized to confound animal research.
Collapse
Affiliation(s)
- Christopher Cheleuitte-Nieves
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York City, New York
| | - Neil S Lipman
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York City, New York
| |
Collapse
|