1
|
Milford A, De Clercq E, Louis-Maerten E, Geneviève LD, Elger BS. How animal ethics committees make decisions - a scoping review of empirical studies. PLoS One 2025; 20:e0318570. [PMID: 40096023 PMCID: PMC11913294 DOI: 10.1371/journal.pone.0318570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/17/2025] [Indexed: 03/19/2025] Open
Abstract
OBJECTIVES The aim of the scoping review is to explore the decision-making process for the evaluation of animal research proposals within Animal Ethics Committees (AEC) and Institutional Animal Care and Use Committees (IACUC), and to critically summarize the available empirical literature on the different factors influencing, or likely to influence, decision-making by AECs when evaluating animal research proposals. METHODS A systematic search of empirical literature published between 01.12.2012 and 03.06.2024 in PubMed, Scopus, and Web of Science, was performed. RESULTS Twelve papers were included in the final results, four of which were quantitative, five qualitative, and three were mixed methods. Qualitative content analysis revealed deficits in the assessment of the 3Rs (Replacement, Reduction or Refinement) or the weighing of harms and benefits. Factors related to the review process, applicants, and committees were found to influence this process. CONCLUSION The findings prompt pragmatic strategies to improve the decision making process of Animal ethics committees. REGISTRATION The protocol for this review was registered with Open Science Framework (OSF) with the following DOI: https://doi.org/10.17605/OSF.IO/GZJMB.
Collapse
Affiliation(s)
- Aoife Milford
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
| | - Eva De Clercq
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
| | | | | | - Bernice S. Elger
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
- Center of Legal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Wu Y, Gao X, Liu Z, Wang P, Wu Z, Li Y, Zhang T, Liu T, Liu T, Li X. Decoding cortical folding patterns in marmosets using machine learning and large language model. Neuroimage 2025; 308:121031. [PMID: 39864569 DOI: 10.1016/j.neuroimage.2025.121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
Macroscale neuroimaging results have revealed significant differences in the structural and functional connectivity patterns of gyri and sulci in the primate cerebral cortex. Despite these findings, understanding these differences at the molecular level has remained challenging. This study leverages a comprehensive dataset of whole-brain in situ hybridization (ISH) data from marmosets, with updates continuing through 2024, to systematically analyze cortical folding patterns. Utilizing advanced machine learning algorithm and large language model (LLM), we identified genes with significant transcriptomic differences between concave (sulci) and convex (gyri) cortical patterns. Further, gene enrichment analysis, neural migration analysis, and axon guidance pathway analysis were employed to elucidate the molecular mechanisms underlying these structural and functional differences. Our findings provide new insights into the molecular basis of cortical folding, demonstrating the potential of LLM in enhancing our understanding of brain structural and functional connectivity.
Collapse
Affiliation(s)
- Yue Wu
- College of Science, North China University of Science and Technology, Tangshan, China
| | - Xuesong Gao
- College of Science, North China University of Science and Technology, Tangshan, China
| | - Zhengliang Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, United States
| | - Pengcheng Wang
- Department of Electrical & Computer Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada
| | - Zihao Wu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, United States
| | - Yiwei Li
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, United States
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, United States
| | - Tao Liu
- College of Science, North China University of Science and Technology, Tangshan, China.
| | - Xiao Li
- School of information science and technology, Northwest University, Xi'an, China.
| |
Collapse
|
3
|
Brown MG, Feller LE, Trupkiewicz JG, Hutchinson EK, Izzi JM. Comparing different strategies to reduce hepatocellular damage in obese common marmosets (Callithrix jacchus). J Med Primatol 2024; 53:e12683. [PMID: 37946549 DOI: 10.1111/jmp.12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Obesity in common marmosets (Callithrix jacchus) can lead to various liver pathologies. In other species, reduced caloric intake and weight loss improve prognosis, and, often, hepatoprotectants are used to halt or reverse hepatocellular damage from fat deposition in the liver. There are no published therapies for reducing hepatocellular damage in obese marmosets. METHODS Fifteen obese marmosets were used to evaluate the ability of caloric restriction and pharmacologic therapy (S-adenosylmethionine + milk thistle extract, or SMT), alone and combined, to reduce elevated liver enzymes. Body weight and serum chemistries were measured every 4 weeks for 6 months. RESULTS Across treatment groups, there was a significant reduction in liver enzymes ALT and AST over time. SMT alone significantly reduced liver enzymes ALT and AST at 6 months from baseline. CONCLUSIONS Caloric restriction and SMT, alone and combined, are effective at reducing liver enzyme levels in obese marmosets.
Collapse
Affiliation(s)
- Mallory Gwendolyn Brown
- Research Animal Resources, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laine Elizabeth Feller
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John Gregory Trupkiewicz
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Kenneth Hutchinson
- Research Animal Resources, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica Marie Izzi
- Research Animal Resources, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Burns M. Review of Environmental and Health Factors Impacting Captive Common Marmoset Welfare in the Biomedical Research Setting. Vet Sci 2023; 10:568. [PMID: 37756090 PMCID: PMC10535419 DOI: 10.3390/vetsci10090568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
As a small-bodied neotropical nonhuman primate species, common marmosets have unique requirements for adequate husbandry and veterinary care to ensure proper maintenance and to promote good animal welfare in a biomedical research setting. Environmental conditions, as well as medical and research-related manipulations, can impact marmoset welfare. Research focus areas, including basic neuroscience, transgenics, and aging, involve additional implications for marmoset welfare. This manuscript provides a comprehensive review of factors that should be considered and mitigated as needed by clinical and research staff working with marmosets in biomedical research facilities to optimize the welfare of captive marmosets.
Collapse
Affiliation(s)
- Monika Burns
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Sukoff Rizzo SJ, Homanics G, Schaeffer DJ, Schaeffer L, Park JE, Oluoch J, Zhang T, Haber A, Seyfried NT, Paten B, Greenwood A, Murai T, Choi SH, Huhe H, Kofler J, Strick PL, Carter GW, Silva AC. Bridging the rodent to human translational gap: Marmosets as model systems for the study of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12417. [PMID: 37614242 PMCID: PMC10442521 DOI: 10.1002/trc2.12417] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/21/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Introduction Our limited understanding of the mechanisms that trigger the emergence of Alzheimer's disease (AD) has contributed to the lack of interventions that stop, prevent, or fully treat this disease. We believe that the development of a non-human primate model of AD will be an essential step toward overcoming limitations of other model systems and is crucial for investigating primate-specific mechanisms underlying the cellular and molecular root causes of the pathogenesis and progression of AD. Methods A new consortium has been established with funding support from the National Institute on Aging aimed at the generation, characterization, and validation of Marmosets As Research Models of AD (MARMO-AD). This consortium will study gene-edited marmoset models carrying genetic risk for AD and wild-type genetically diverse aging marmosets from birth throughout their lifespan, using non-invasive longitudinal assessments. These include characterizing the genetic, molecular, functional, behavioral, cognitive, and pathological features of aging and AD. Results The consortium successfully generated viable founders carrying PSEN1 mutations in C410Y and A426P using CRISPR/Cas9 approaches, with germline transmission demonstrated in the C410Y line. Longitudinal characterization of these models, their germline offspring, and normal aging outbred marmosets is ongoing. All data and resources from this consortium will be shared with the greater AD research community. Discussion By establishing marmoset models of AD, we will be able to investigate primate-specific cellular and molecular root causes that underlie the pathogenesis and progression of AD, overcome limitations of other model organisms, and support future translational studies to accelerate the pace of bringing therapies to patients.
Collapse
Affiliation(s)
| | - Gregg Homanics
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | - Lauren Schaeffer
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Jung Eun Park
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Julia Oluoch
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tingting Zhang
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | | | - Benedict Paten
- University of California Santa Cruz Genomics InstituteUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | | | - Takeshi Murai
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Sang Ho Choi
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Hasi Huhe
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Julia Kofler
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Peter L. Strick
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | - Afonso C. Silva
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
6
|
Samandra R, Haque ZZ, Rosa MGP, Mansouri FA. The marmoset as a model for investigating the neural basis of social cognition in health and disease. Neurosci Biobehav Rev 2022; 138:104692. [PMID: 35569579 DOI: 10.1016/j.neubiorev.2022.104692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/23/2023]
Abstract
Social-cognitive processes facilitate the use of environmental cues to understand others, and to be understood by others. Animal models provide vital insights into the neural underpinning of social behaviours. To understand social cognition at even deeper behavioural, cognitive, neural, and molecular levels, we need to develop more representative study models, which allow testing of novel hypotheses using human-relevant cognitive tasks. Due to their cooperative breeding system and relatively small size, common marmosets (Callithrix jacchus) offer a promising translational model for such endeavours. In addition to having social behavioural patterns and group dynamics analogous to those of humans, marmosets have cortical brain areas relevant for the mechanistic analysis of human social cognition, albeit in simplified form. Thus, they are likely suitable animal models for deciphering the physiological processes, connectivity and molecular mechanisms supporting advanced cognitive functions. Here, we review findings emerging from marmoset social and behavioural studies, which have already provided significant insights into executive, motivational, social, and emotional dysfunction associated with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Zakia Z Haque
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; ARC Centre for Integrative Brain Function, Monash University, Australia.
| | - Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; ARC Centre for Integrative Brain Function, Monash University, Australia.
| |
Collapse
|
7
|
Prescott MJ, Leach MC, Truelove MA. Harmonisation of welfare indicators for macaques and marmosets used or bred for research. F1000Res 2022; 11:272. [PMID: 36111214 PMCID: PMC9459172 DOI: 10.12688/f1000research.109380.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 09/28/2023] Open
Abstract
Background: Accurate assessment of the welfare of non-human primates (NHPs) used and bred for scientific purposes is essential for effective implementation of obligations to optimise their well-being, for validation of refinement techniques and novel welfare indicators, and for ensuring the highest quality data is obtained from these animals. Despite the importance of welfare assessment in NHP research, there is little consensus on what should be measured. Greater harmonisation of welfare indicators between facilities would enable greater collaboration and data sharing to address welfare-related questions in the management and use of NHPs. Methods: A Delphi consultation was used to survey attendees of the 2019 NC3Rs Primate Welfare Meeting (73 respondents) to build consensus on which welfare indicators for macaques and marmosets are reliable, valid, and practicable, and how these can be measured. Results: Self-harm behaviour, social enrichment, cage dimensions, body weight, a health monitoring programme, appetite, staff training, and positive reinforcement training were considered valid, reliable, and practicable indicators for macaques (≥70% consensus) within a hypothetical scenario context involving 500 animals. Indicators ranked important for assessing marmoset welfare were body weight, NHP induced and environmentally induced injuries, cage furniture, huddled posture, mortality, blood in excreta, and physical enrichment. Participants working with macaques in infectious disease and breeding identified a greater range of indicators as valid and reliable than did those working in neuroscience and toxicology, where animal-based indicators were considered the most important. The findings for macaques were compared with a previous Delphi consultation, and the expert-defined consensus from the two surveys used to develop a prototype protocol for assessing macaque welfare in research settings. Conclusions: Together the Delphi results and proto-protocol enable those working with research NHPs to more effectively assess the welfare of the animals in their care and to collaborate to advance refinement of NHP management and use.
Collapse
Affiliation(s)
- Mark J. Prescott
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, NW1 2BE, UK
| | - Matthew C. Leach
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Melissa A. Truelove
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, GA 30329, USA
| |
Collapse
|
8
|
Prescott MJ, Leach MC, Truelove MA. Harmonisation of welfare indicators for macaques and marmosets used or bred for research. F1000Res 2022; 11:272. [PMID: 36111214 PMCID: PMC9459172.2 DOI: 10.12688/f1000research.109380.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 12/19/2022] Open
Abstract
Background: Accurate assessment of the welfare of non-human primates (NHPs) used and bred for scientific purposes is essential for effective implementation of obligations to optimise their well-being, for validation of refinement techniques and novel welfare indicators, and for ensuring the highest quality data is obtained from these animals. Despite the importance of welfare assessment in NHP research, there is little consensus on what should be measured. Greater harmonisation of welfare indicators between facilities would enable greater collaboration and data sharing to address welfare-related questions in the management and use of NHPs. Methods: A Delphi consultation was used to survey attendees of the 2019 NC3Rs Primate Welfare Meeting (73 respondents) to build consensus on which welfare indicators for macaques and marmosets are reliable, valid, and practicable, and how these can be measured. Results: Self-harm behaviour, social enrichment, cage dimensions, body weight, a health monitoring programme, appetite, staff training, and positive reinforcement training were considered valid, reliable, and practicable indicators for macaques (≥70% consensus) within a hypothetical scenario context involving 500 animals. Indicators ranked important for assessing marmoset welfare were body weight, NHP induced and environmentally induced injuries, cage furniture, huddled posture, mortality, blood in excreta, and physical enrichment. Participants working with macaques in infectious disease and breeding identified a greater range of indicators as valid and reliable than did those working in neuroscience and toxicology, where animal-based indicators were considered the most important. The findings for macaques were compared with a previous Delphi consultation, and the expert-defined consensus from the two surveys used to develop a prototype protocol for assessing macaque welfare in research settings. Conclusions: Together the Delphi results and proto-protocol enable those working with research NHPs to more effectively assess the welfare of the animals in their care and to collaborate to advance refinement of NHP management and use.
Collapse
Affiliation(s)
- Mark J Prescott
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, NW1 2BE, UK
| | - Matthew C Leach
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Melissa A Truelove
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, GA 30329, USA
| |
Collapse
|
9
|
Prescott MJ, Leach MC, Truelove MA. Harmonisation of welfare indicators for macaques and marmosets used or bred for research. F1000Res 2022; 11:272. [PMID: 36111214 PMCID: PMC9459172 DOI: 10.12688/f1000research.109380.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 09/28/2023] Open
Abstract
Background: Accurate assessment of the welfare of non-human primates (NHPs) used and bred for scientific purposes is essential for effective implementation of obligations to optimise their well-being, for validation of refinement techniques and novel welfare indicators, and for ensuring the highest quality data is obtained from these animals. Despite the importance of welfare assessment in NHP research, there is little consensus on what should be measured. Greater harmonisation of welfare indicators between facilities would enable greater collaboration and data sharing to address welfare-related questions in the management and use of NHPs. Methods: A Delphi consultation was used to survey attendees of the 2019 NC3Rs Primate Welfare Meeting (73 respondents) to build consensus on which welfare indicators for macaques and marmosets are reliable, valid, and practicable, and how these can be measured. Results: Self-harm behaviour, social enrichment, cage dimensions, body weight, a health monitoring programme, appetite, staff training, and positive reinforcement training were considered valid, reliable, and practicable indicators for macaques (≥70% consensus) within a hypothetical scenario context involving 500 animals. Indicators ranked important for assessing marmoset welfare were body weight, NHP induced and environmentally induced injuries, cage furniture, huddled posture, mortality, blood in excreta, and physical enrichment. Participants working with macaques in infectious disease and breeding identified a greater range of indicators as valid and reliable than did those working in neuroscience and toxicology, where animal-based indicators were considered the most important. The findings for macaques were compared with a previous Delphi consultation, and the expert-defined consensus from the two surveys used to develop a prototype protocol for assessing macaque welfare in research settings. Conclusions: Together the Delphi results and proto-protocol enable those working with research NHPs to more effectively assess the welfare of the animals in their care and to collaborate to advance refinement of NHP management and use.
Collapse
Affiliation(s)
- Mark J. Prescott
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, NW1 2BE, UK
| | - Matthew C. Leach
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Melissa A. Truelove
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, GA 30329, USA
| |
Collapse
|
10
|
Burns M, Silva AC. Current Topics in Research, Care, and Welfare of Common Marmosets. ILAR J 2022. [DOI: 10.1093/ilar/ilac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Although the common marmoset (Callithrix jacchus) has been maintained in captivity in biomedical research settings for decades, interest and use of the species as an animal model for a diverse array of purposes has increased in the 21st century. Unfortunately, the development of validated animal care standards such as nutrition, husbandry, and clinical care has not expanded with the same rapidity as the use of the species in research. The goal of this themed issue of the ILAR Journal is to review current literature relevant to topics that impact marmoset health, welfare, and use in research. As the population of captive marmosets increases worldwide, the editors urge scientists, veterinary clinicians, and colony managers to continue conducting and publishing robust studies to develop evidence-based standards related to marmoset care and use. The editors also encourage IACUCs and other institutional review bodies to seek training on topics relevant to marmoset welfare and develop related policies prior to acquiring animals as a novel species.
Collapse
Affiliation(s)
- Monika Burns
- Animal Welfare Compliance, Scientific Operations, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Walker RL, Saylor KW, Waltz M, Fisher JA. Translational science: a survey of US biomedical researchers' perspectives and practices. Lab Anim (NY) 2021; 51:22-35. [PMID: 34949847 DOI: 10.1038/s41684-021-00890-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023]
Abstract
This national survey aimed to identify how biomedical researchers using vertebrate animals viewed issues of significance for translational science, including oversight and public engagement, and to analyze how researcher characteristics and animal model choice correlate with those views. Responses from 1,187 researchers showed awareness of, and concerns about, problems of translation, reproducibility and rigor. Surveyed scientists were nevertheless optimistic about the value of animal studies, were favorable about research oversight and reported openness with non-scientists in discussing their animal work. Differences in survey responses among researchers also point to diverse perspectives within the animal research community on these matters. Most significant was variability associated with the primary type of animal that surveyed scientists used in their work. Other significant divergence in opinion appeared on the basis of professional role factors, including the type of degree held, workplace setting, type of funding, experience on an institutional animal care and use committee and personal demographic characteristics of age and gender.
Collapse
Affiliation(s)
- Rebecca L Walker
- Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Philosophy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Katherine W Saylor
- Department of Medical Ethics and Health Policy, University of Pennsylvania, Philadelphia, PA, USA
| | - Margaret Waltz
- Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jill A Fisher
- Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|