1
|
Lima AJF, Hajdu KL, Abdo L, Batista-Silva LR, de Oliveira Andrade C, Correia EM, Aragão EAA, Bonamino MH, Lourenzoni MR. In silico and in vivo analysis reveal impact of c-Myc tag in FMC63 scFv-CD19 protein interface and CAR-T cell efficacy. Comput Struct Biotechnol J 2024; 23:2375-2387. [PMID: 38873646 PMCID: PMC11170440 DOI: 10.1016/j.csbj.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Anti-CD19 CAR-T cell therapy represents a breakthrough in the treatment of B-cell malignancies, and it is expected that this therapy modality will soon cover a range of solid tumors as well. Therefore, a universal cheap and sensitive method to detect CAR expression is of foremost importance. One possibility is the use of epitope tags such as c-Myc, HA or FLAG tags attached to the CAR extracellular domain, however, it is important to determine whether these tags can influence binding of the CAR with its target molecule. Here, we conducted in-silico structural modelling of an FMC63-based anti-CD19 single-chain variable fragment (scFv) with and without a c-Myc peptide tag added to the N-terminus portion and performed molecular dynamics simulation of the scFv with the CD19 target. We show that the c-Myc tag presence in the N-terminus portion does not affect the scFv's structural equilibrium and grants more stability to the scFv. However, intermolecular interaction potential (IIP) analysis reveals that the tag can approximate the complementarity-determining regions (CDRs) present in the scFv and cause steric impediment, potentially disturbing interaction with the CD19 protein. We then tested this possibility with CAR-T cells generated from human donors in a Nalm-6 leukemia model, showing that CAR-T cells with the c-Myc tag have overall worse antitumor activity, which was also observed when the tag was added to the C-terminus position. Ultimately, our results suggest that tag addition is an important aspect of CAR design and can influence CAR-T cell function, therefore its use should be carefully considered.
Collapse
Affiliation(s)
- Ana Julia Ferreira Lima
- Research Group on Protein Engineering and Health Solutions (GEPeSS), Oswaldo Cruz Foundation Ceará (Fiocruz-CE), São José, Precabura, 61773-270 Eusébio, Ceará, Brazil
- Federal University of Ceará (UFC), Pici campus (Building 873), 60440-970 Fortaleza, Ceará, Brazil
| | - Karina Lobo Hajdu
- Cell and Gene Therapy Program, Research coordination - Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Luiza Abdo
- Cell and Gene Therapy Program, Research coordination - Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | | | - Clara de Oliveira Andrade
- Cell and Gene Therapy Program, Research coordination - Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Eduardo Mannarino Correia
- Cell and Gene Therapy Program, Research coordination - Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | | | - Martín Hernán Bonamino
- Cell and Gene Therapy Program, Research coordination - Brazilian National Cancer Institute, Rio de Janeiro, Brazil
- Vice - Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marcos Roberto Lourenzoni
- Research Group on Protein Engineering and Health Solutions (GEPeSS), Oswaldo Cruz Foundation Ceará (Fiocruz-CE), São José, Precabura, 61773-270 Eusébio, Ceará, Brazil
| |
Collapse
|
2
|
Cheever A, Kang CC, O’Neill KL, Weber KS. Application of novel CAR technologies to improve treatment of autoimmune disease. Front Immunol 2024; 15:1465191. [PMID: 39445021 PMCID: PMC11496059 DOI: 10.3389/fimmu.2024.1465191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has become an important treatment for hematological cancers, and its success has spurred research into CAR T cell therapies for other diseases, including solid tumor cancers and autoimmune diseases. Notably, the development of CAR-based treatments for autoimmune diseases has shown great progress recently. Clinical trials for anti-CD19 and anti-BCMA CAR T cells in treating severe B cell-mediated autoimmune diseases, like systemic lupus erythematosus (SLE), have shown lasting remission thus far. CAR T cells targeting autoreactive T cells are beginning clinical trials for treating T cell mediated autoimmune diseases. Chimeric autoantigen receptor (CAAR) T cells specifically target and eliminate only autoreactive B cells, and they have shown promise in treating mucosal pemphigus vulgaris and MuSK myasthenia gravis. Regulatory CAR T cells have also been developed, which show potential in altering autoimmune affected areas by creating a protective barrier as well as helping decrease inflammation. These new treatments are only the beginning of potential CAR T cell applications in treating autoimmune disease. Novel CAR technologies have been developed that increase the safety, potency, specificity, and efficacy of CAR T cell therapy. Applying these novel modifications to autoimmune CARs has the potential to enhance the efficacy and applicability of CAR therapies to autoimmune disease. This review will detail several recently developed CAR technologies and discuss how their application to autoimmune disease will improve this emerging field. These include logic-gated CARs, soluble protein-secreting CARs, and modular CARs that enable CAR T cell therapies to be more specific, reach a wider span of target cells, be safer for patients, and give a more potent cytotoxic response. Applying these novel CAR technologies to the treatment of autoimmune diseases has the potential to revolutionize this growing application of CAR T cell therapies.
Collapse
|
3
|
Mutsaers SE, Miles T, Prêle CM, Hoyne GF. Emerging role of immune cells as drivers of pulmonary fibrosis. Pharmacol Ther 2023; 252:108562. [PMID: 37952904 DOI: 10.1016/j.pharmthera.2023.108562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The pathogenesis of pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF) and other forms of interstitial lung disease, involves a complex interplay of various factors including host genetics, environmental pollutants, infection, aberrant repair and dysregulated immune responses. Highly variable clinical outcomes of some ILDs, in particular IPF, have made it difficult to identify the precise mechanisms involved in disease pathogenesis and thus the development of a specific cure or treatment to halt and reverse the decline in patient health. With the advent of in-depth molecular diagnostics, it is becoming evident that the pathogenesis of IPF is unlikely to be the same for all patients and therefore will likely require different treatment approaches. Chronic inflammation is a cardinal feature of IPF and is driven by both innate and adaptive immune responses. Inflammatory cells and activated fibroblasts secrete various pro-inflammatory cytokines and chemokines that perpetuate the inflammatory response and contribute to the recruitment and activation of more immune cells and fibroblasts. The balance between pro-inflammatory and regulatory immune cell subsets, as well as the interactions between immune cell types and resident cells within the lung microenvironment, ultimately determines the extent of fibrosis and the potential for resolution. This review examines the role of the innate and adaptive immune responses in pulmonary fibrosis, with an emphasis on IPF. The role of different immune cell types is discussed as well as novel anti-inflammatory and immunotherapy approaches currently in clinical trial or in preclinical development.
Collapse
Affiliation(s)
- Steven E Mutsaers
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia.
| | - Tylah Miles
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia; School of Medical, Molecular and Forensic Sciences, Murdoch University, WA, Australia
| | - Gerard F Hoyne
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia; The School of Health Sciences and Physiotherapy, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
4
|
Challenges and opportunities in shared care for international patients treated with cellular therapy for nonmalignant disease. Curr Opin Hematol 2023; 30:22-27. [PMID: 36539362 DOI: 10.1097/moh.0000000000000742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As cellular therapies gradually become the mainstay of treatment for several nonmalignant diseases, there appears to be varied accessibility to these therapies globally. Despite considerable burden of nonmalignant conditions, such as sickle cell disease, thalassemia, and aplastic anemia in populations of low-middle-income countries, the utilization of cellular therapies remain sparse because of lack of resources. Globally, the frequency of hematopoietic stem cell transplant (HSCT) has increased disproportionately in countries with higher gross national income (GNI) per capita, governmental healthcare expenditures, and a high human development index. This leads to a large subset of international patients seeking care in the United States. This review summarizes the unique set of challenges that often arise when offering sophisticated therapies such as HSCT to international patients constituting of cross-cultural, logistical, financial, and medical challenges and the opportunities that are available to bridge the gap.
Collapse
|
5
|
Alternative CAR Therapies: Recent Approaches in Engineering Chimeric Antigen Receptor Immune Cells to Combat Cancer. Biomedicines 2022; 10:biomedicines10071493. [PMID: 35884798 PMCID: PMC9313317 DOI: 10.3390/biomedicines10071493] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/08/2023] Open
Abstract
For nearly three decades, chimeric antigen receptors (CARs) have captivated the interest of researchers seeking to find novel immunotherapies to treat cancer. CARs were first designed to work with T cells, and the first CAR T cell therapy was approved to treat B cell lymphoma in 2017. Recent advancements in CAR technology have led to the development of modified CARs, including multi-specific CARs and logic gated CARs. Other immune cell types, including natural killer (NK) cells and macrophages, have also been engineered to express CARs to treat cancer. Additionally, CAR technology has been adapted in novel approaches to treating autoimmune disease and other conditions and diseases. In this article, we review these recent advancements in alternative CAR therapies and design, as well as their mechanisms of action, challenges in application, and potential future directions.
Collapse
|
6
|
Elliott T. Immunotherapy advances: One year on. IMMUNOTHERAPY ADVANCES 2022; 2:ltac001. [PMID: 35919492 PMCID: PMC9327108 DOI: 10.1093/immadv/ltac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tim Elliott
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, UK
| |
Collapse
|