1
|
Walz A, Sax S, Scheurer C, Tamasi B, Mäser P, Wittlin S. Incomplete Plasmodium falciparum growth inhibition following piperaquine treatment translates into increased parasite viability in the in vitro parasite reduction ratio assay. Front Cell Infect Microbiol 2024; 14:1396786. [PMID: 38746786 PMCID: PMC11091375 DOI: 10.3389/fcimb.2024.1396786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 01/06/2025] Open
Abstract
Antimalarial resistance to the first-line partner drug piperaquine (PPQ) threatens the effectiveness of artemisinin-based combination therapy. In vitro piperaquine resistance is characterized by incomplete growth inhibition, i.e. increased parasite growth at higher drug concentrations. However, the 50% inhibitory concentrations (IC50) remain relatively stable across parasite lines. Measuring parasite viability of a drug-resistant Cambodian Plasmodium falciparum isolate in a parasite reduction ratio (PRR) assay helped to better understand the resistance phenotype towards PPQ. In this parasite isolate, incomplete growth inhibition translated to only a 2.5-fold increase in IC50 but a dramatic decrease of parasite killing in the PRR assay. Hence, this pilot study reveals the potential of in vitro parasite viability assays as an important, additional tool when it comes to guiding decision-making in preclinical drug development and post approval. To the best of our knowledge, this is the first time that a compound was tested against a drug-resistant parasite in the in vitro PRR assay.
Collapse
Affiliation(s)
- Annabelle Walz
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sibylle Sax
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Scheurer
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Balint Tamasi
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascal Mäser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sergio Wittlin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Schmidt S, Wichers-Misterek JS, Behrens HM, Birnbaum J, Henshall IG, Dröge J, Jonscher E, Flemming S, Castro-Peña C, Mesén-Ramírez P, Spielmann T. The Kelch13 compartment contains highly divergent vesicle trafficking proteins in malaria parasites. PLoS Pathog 2023; 19:e1011814. [PMID: 38039338 PMCID: PMC10718435 DOI: 10.1371/journal.ppat.1011814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/13/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Single amino acid changes in the parasite protein Kelch13 (K13) result in reduced susceptibility of P. falciparum parasites to artemisinin and its derivatives (ART). Recent work indicated that K13 and other proteins co-localising with K13 (K13 compartment proteins) are involved in the endocytic uptake of host cell cytosol (HCCU) and that a reduction in HCCU results in reduced susceptibility to ART. HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins among the few proteins so far functionally linked to this process. Here we further defined the composition of the K13 compartment by analysing more hits from a previous BioID, showing that MyoF and MCA2 as well as Kelch13 interaction candidate (KIC) 11 and 12 are found at this site. Functional analyses, tests for ART susceptibility as well as comparisons of structural similarities using AlphaFold2 predictions of these and previously identified proteins showed that vesicle trafficking and endocytosis domains were frequent in proteins involved in resistance or endocytosis (or both), comprising one group of K13 compartment proteins. While this strengthened the link of the K13 compartment to endocytosis, many proteins of this group showed unusual domain combinations and large parasite-specific regions, indicating a high level of taxon-specific adaptation of this process. Another group of K13 compartment proteins did not influence endocytosis or ART susceptibility and lacked detectable vesicle trafficking domains. We here identified the first protein of this group that is important for asexual blood stage development and showed that it likely is involved in invasion. Overall, this work identified novel proteins functioning in endocytosis and at the K13 compartment. Together with comparisons of structural predictions it provides a repertoire of functional domains at the K13 compartment that indicate a high level of adaption of endocytosis in malaria parasites.
Collapse
Affiliation(s)
- Sabine Schmidt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Jakob Birnbaum
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Jana Dröge
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ernst Jonscher
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sven Flemming
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
3
|
de Carvalho LP, Niepoth E, Mavraj-Husejni A, Kreidenweiss A, Herrmann J, Müller R, Knaab T, Burckhardt BB, Kurz T, Held J. Quantification of Plasmodium falciparum HRP-2 as an alternative method to [ 3H]hypoxanthine incorporation to measure the parasite reduction ratio in vitro. Int J Antimicrob Agents 2023; 62:106894. [PMID: 37348620 DOI: 10.1016/j.ijantimicag.2023.106894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
In the absence of a highly efficacious vaccine, chemotherapy remains the cornerstone to control malaria morbidity and mortality. The threat of the emergence of parasites resistant to artemisinin-based combination therapies highlights the need for new antimalarial drugs ideally with superior properties. The killing rate reflects the speed of action of antimalarial drugs, which can be measured in vitro through the parasite reduction ratio (PRR) assay to shortlist interesting candidates. As a standard, the in vitro PRR assay is performed by measuring [3H]hypoxanthine incorporation of Plasmodium falciparum. This methodology is restricted to specialised laboratories owing to the handling of radioactive material. In this work, we describe a sandwich enzyme-linked immunosorbent assay to detect P. falciparum histidine-rich protein 2 (HRP-2) as an alternative methodology to assess the PRR. We first validated the methodology with established antimalarial drugs (artesunate, chloroquine, pyrimethamine and atovaquone) by comparing our results with previous results of the [3H]hypoxanthine incorporation readout provided by an expert laboratory, and subsequently assessed the speed of action of four new antimalarial candidates (compound 22, chlorotonil A, boromycin and ivermectin). The HRP-2 PRR assay achieved comparable results to the [3H]hypoxanthine incorporation readout in terms of parasite growth rate over time, lag phase and parasite clearance time. In addition, parasite growth following drug exposure was quantified after 7, 14, 21 and 28 days of recovery time. In conclusion, the PRR assay based on HRP-2 is similar to [3H]hypoxanthine in determining a drug's parasite killing rate and can be widely used in all research laboratories.
Collapse
Affiliation(s)
| | - Elena Niepoth
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon; German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Jennifer Herrmann
- German Center for Infection Research (DZIF), Braunschweig, Germany; Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Rolf Müller
- German Center for Infection Research (DZIF), Braunschweig, Germany; Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Tanja Knaab
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bjoern B Burckhardt
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon; German Center for Infection Research (DZIF), Braunschweig, Germany.
| |
Collapse
|
4
|
Demarta-Gatsi C, Andenmatten N, Jiménez-Díaz MB, Gobeau N, Cherkaoui-Rabti MH, Fuchs A, Díaz P, Berja S, Sánchez R, Gómez H, Ruiz E, Sainz P, Salazar E, Gil-Merino R, Mendoza LM, Eguizabal C, Leroy D, Moehrle JJ, Tornesi B, Angulo-Barturen I. Predicting Optimal Antimalarial Drug Combinations from a Standardized Plasmodium falciparum Humanized Mouse Model. Antimicrob Agents Chemother 2023; 67:e0157422. [PMID: 37133382 PMCID: PMC10269072 DOI: 10.1128/aac.01574-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/29/2023] [Indexed: 05/04/2023] Open
Abstract
The development of new combinations of antimalarial drugs is urgently needed to prevent the spread of parasites resistant to drugs in clinical use and contribute to the control and eradication of malaria. In this work, we evaluated a standardized humanized mouse model of erythrocyte asexual stages of Plasmodium falciparum (PfalcHuMouse) for the selection of optimal drug combinations. First, we showed that the replication of P. falciparum was robust and highly reproducible in the PfalcHuMouse model by retrospective analysis of historical data. Second, we compared the relative value of parasite clearance from blood, parasite regrowth after suboptimal treatment (recrudescence), and cure as variables of therapeutic response to measure the contributions of partner drugs to combinations in vivo. To address the comparison, we first formalized and validated the day of recrudescence (DoR) as a new variable and found that there was a log-linear relationship with the number of viable parasites per mouse. Then, using historical data on monotherapy and two small cohorts of PfalcHuMice evaluated with ferroquine plus artefenomel or piperaquine plus artefenomel, we found that only measurements of parasite killing (i.e., cure of mice) as a function of drug exposure in blood allowed direct estimation of the individual drug contribution to efficacy by using multivariate statistical modeling and intuitive graphic displays. Overall, the analysis of parasite killing in the PfalcHuMouse model is a unique and robust experimental in vivo tool to inform the selection of optimal combinations by pharmacometric pharmacokinetic and pharmacodynamic (PK/PD) modeling.
Collapse
Affiliation(s)
| | | | | | | | | | - Aline Fuchs
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Pablo Díaz
- The Art of Discovery, Derio, Basque Country, Spain
| | - Sandra Berja
- The Art of Discovery, Derio, Basque Country, Spain
| | | | - Hazel Gómez
- The Art of Discovery, Derio, Basque Country, Spain
| | | | - Paula Sainz
- The Art of Discovery, Derio, Basque Country, Spain
| | | | | | | | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
- Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Bizkaia, Spain
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | | |
Collapse
|
5
|
New In Vitro Interaction-Parasite Reduction Ratio Assay for Early Derisk in Clinical Development of Antimalarial Combinations. Antimicrob Agents Chemother 2022; 66:e0055622. [PMID: 36197116 PMCID: PMC9664866 DOI: 10.1128/aac.00556-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The development and spread of drug-resistant phenotypes substantially threaten malaria control efforts. Combination therapies have the potential to minimize the risk of resistance development but require intensive preclinical studies to determine optimal combination and dosing regimens. To support the selection of new combinations, we developed a novel in vitro-in silico combination approach to help identify the pharmacodynamic interactions of the two antimalarial drugs in a combination which can be plugged into a pharmacokinetic/pharmacodynamic model built with human monotherapy parasitological data to predict the parasitological endpoints of the combination. This makes it possible to optimally select drug combinations and doses for the clinical development of antimalarials. With this assay, we successfully predicted the endpoints of two phase 2 clinical trials in patients with the artefenomel-piperaquine and artefenomel-ferroquine drug combinations. In addition, the predictive performance of our novel in vitro model was equivalent to that of the humanized mouse model outcome. Last, our more informative in vitro combination assay provided additional insights into the pharmacodynamic drug interactions compared to the in vivo systems, e.g., a concentration-dependent change in the maximum killing effect (Emax) and the concentration producing 50% of the killing maximum effect (EC50) of piperaquine or artefenomel or a directional reduction of the EC50 of ferroquine by artefenomel and a directional reduction of Emax of ferroquine by artefenomel. Overall, this novel in vitro-in silico-based technology will significantly improve and streamline the economic development of new drug combinations for malaria and potentially also in other therapeutic areas.
Collapse
|
6
|
Parasite Viability as a Measure of In Vivo Drug Activity in Preclinical and Early Clinical Antimalarial Drug Assessment. Antimicrob Agents Chemother 2022; 66:e0011422. [PMID: 35727057 PMCID: PMC9295577 DOI: 10.1128/aac.00114-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The rate at which parasitemia declines in a host after treatment with an antimalarial drug is a major metric for assessment of antimalarial drug activity in preclinical models and in early clinical trials. However, this metric does not distinguish between viable and nonviable parasites. Thus, enumeration of parasites may result in underestimation of drug activity for some compounds, potentially confounding its use as a metric for assessing antimalarial activity in vivo. Here, we report a study of the effect of artesunate on Plasmodium falciparum viability in humans and in mice. We first measured the drug effect in mice by estimating the decrease in parasite viability after treatment using two independent approaches to estimate viability. We demonstrate that, as previously reported in humans, parasite viability declines much faster after artesunate treatment than does the decline in parasitemia (termed parasite clearance). We also observed that artesunate kills parasites faster at higher concentrations, which is not discernible from the traditional parasite clearance curve and that each subsequent dose of artesunate maintains its killing effect. Furthermore, based on measures of parasite viability, we could accurately predict the in vivo recrudescence of infection. Finally, using pharmacometrics modeling, we show that the apparent differences in the antimalarial activity of artesunate in mice and humans are partly explained by differences in host removal of dead parasites in the two hosts. However, these differences, along with different pharmacokinetic profiles, do not fully account for the differences in activity. (This study has been registered with the Australian New Zealand Clinical Trials Registry under identifier ACTRN12617001394336.)
Collapse
|
7
|
Radohery GFR, Gower J, Barber BE, Kansagra K, Möhrle JJ, Davenport MP, McCarthy JS, Khoury DS, Rebelo M. Effect of novel antimalarial ZY-19489 on Plasmodium falciparum viability in a volunteer infection study. THE LANCET. INFECTIOUS DISEASES 2022; 22:760-761. [PMID: 35643094 DOI: 10.1016/s1473-3099(22)00294-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Affiliation(s)
| | - Jeremy Gower
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | | | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and the Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Maria Rebelo
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Instituto de Medicina Molecular Joao Lobo Antunes, Lisbon 1649-028, Portugal.
| |
Collapse
|
8
|
SheelaNair A, Romanczuk AS, Aogo RA, Haldar RN, Lansink LIM, Cromer D, Salinas YG, Guy RK, McCarthy JS, Davenport MP, Haque A, Khoury DS. Similarly efficacious anti-malarial drugs SJ733 and pyronaridine differ in their ability to remove circulating parasites in mice. Malar J 2022; 21:49. [PMID: 35172826 PMCID: PMC8848794 DOI: 10.1186/s12936-022-04075-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Artemisinin-based combination therapy (ACT) has been a mainstay for malaria prevention and treatment. However, emergence of drug resistance has incentivised development of new drugs. Defining the kinetics with which circulating parasitized red blood cells (pRBC) are lost after drug treatment, referred to as the “parasite clearance curve”, has been critical for assessing drug efficacy; yet underlying mechanisms remain partly unresolved. The clearance curve may be shaped both by the rate at which drugs kill parasites, and the rate at which drug-affected parasites are removed from circulation. Methods In this context, two anti-malarials, SJ733, and an ACT partner drug, pyronaridine were compared against sodium artesunate in mice infected with Plasmodium berghei (strain ANKA). To measure each compound’s capacity for pRBC removal in vivo, flow cytometric monitoring of a single cohort of fluorescently-labelled pRBC was employed, and combined with ex vivo parasite culture to assess parasite maturation and replication. Results These three compounds were found to be similarly efficacious in controlling established infection by reducing overall parasitaemia. While sodium artesunate acted relatively consistently across the life-stages, single-dose SJ733 elicited a biphasic effect, triggering rapid, partly phagocyte-dependent removal of trophozoites and schizonts, followed by arrest of residual ring-stages. In contrast, pyronaridine abrogated maturation of younger parasites, with less pronounced effects on mature parasites, while modestly increasing pRBC removal. Conclusions Anti-malarials SJ733 and pyronaridine, though similarly efficacious in reducing overall parasitaemia in mice, differed markedly in their capacity to arrest replication and remove pRBC from circulation. Thus, similar parasite clearance curves can result for anti-malarials with distinct capacities to inhibit, kill and clear parasites.
Collapse
Affiliation(s)
- Arya SheelaNair
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Aleksandra S Romanczuk
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Rosemary A Aogo
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, 2052, Australia
| | - Rohit Nemai Haldar
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Lianne I M Lansink
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Parkville, VIC, 3000, Australia
| | - Deborah Cromer
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, 2052, Australia
| | | | - R Kiplin Guy
- College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.,Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Parkville, VIC, 3000, Australia.,Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, 2052, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia. .,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Parkville, VIC, 3000, Australia.
| | - David S Khoury
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, 2052, Australia.
| |
Collapse
|
9
|
White NJ, Watson JA. Questioning the Claimed Superiority of Malaria Parasite Ex Vivo Viability Reduction Over Observed Parasite Clearance Rate? J Infect Dis 2021; 224:738-739. [PMID: 34398241 PMCID: PMC8366431 DOI: 10.1093/infdis/jiaa790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/22/2020] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nicholas J White
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - James A Watson
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|