1
|
Castillo-González J, Buscemi L, Vargas-Rodríguez P, Serrano-Martínez I, Forte-Lago I, Caro M, Price M, Hernández-Cortés P, Hirt L, González-Rey E. Cortistatin exerts an immunomodulatory and neuroprotective role in a preclinical model of ischemic stroke. Pharmacol Res 2024; 210:107501. [PMID: 39521024 DOI: 10.1016/j.phrs.2024.107501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Ischemic stroke is the result of a permanent or transient occlusion of a brain artery, leading to irreversible tissue injury and long-term sequelae. Despite ongoing advancements in revascularization techniques, stroke remains the second leading cause of death worldwide. A comprehensive understanding of the complex and interconnected mechanisms, along with the endogenous mediators that modulate stroke responses is essential for the development of effective interventions. Our study investigates cortistatin, a neuropeptide extensively distributed in the immune and central nervous systems, known for its immunomodulatory properties. With neuroinflammation and peripheral immune deregulation as key pathological features of brain ischemia, cortistatin emerges as a promising therapeutic candidate. To this aim, we evaluated its potential effect in a well-established middle cerebral artery occlusion (MCAO) preclinical stroke model. Our findings indicated that the peripheral administration of cortistatin at 24 h post-stroke significantly reduced neurological damage and enhanced recovery. Importantly, cortistatin-induced neuroprotection was multitargeted, as it modulated the glial reactivity and astrocytic scar formation, facilitated blood-brain barrier recovery, and regulated local and systemic immune dysfunction. Surprisingly, administration of cortistatin at immediate and early post-stroke time points proved to be not beneficial and even detrimental. These results emphasize the importance of understanding the spatio-temporal dynamics of stroke pathology to develop innovative therapeutic strategies with appropriate time windows. Premature interruption of certain neuroinflammatory processes might inadvertently compromise neuroprotective mechanisms. In summary, our study highlights cortistatin as a novel pleiotropic therapeutic approach against ischemic stroke, offering new treatment options for patients who undergo early revascularization intervention but unsuccessful recovery.
Collapse
Affiliation(s)
- J Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - L Buscemi
- University of Lausanne, Lausanne, Switzerland; Lausanne University Hospital, Lausanne, Switzerland
| | - P Vargas-Rodríguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - I Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - I Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - M Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - M Price
- University of Lausanne, Lausanne, Switzerland; Lausanne University Hospital, Lausanne, Switzerland
| | | | - L Hirt
- University of Lausanne, Lausanne, Switzerland; Lausanne University Hospital, Lausanne, Switzerland.
| | - E González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain.
| |
Collapse
|
2
|
He Z, Peng B, Wang Q, Tian J, Liu P, Feng J, Liao Y, Chen L, Jia P, Tang J. Transcriptomic analysis identifies the neuropeptide cortistatin (CORT) as an inhibitor of temozolomide (TMZ) resistance by suppressing the NF-κB-MGMT signaling axis in human glioma. Genes Dis 2024; 11:100977. [PMID: 38292193 PMCID: PMC10825237 DOI: 10.1016/j.gendis.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/19/2023] [Accepted: 04/02/2023] [Indexed: 02/01/2024] Open
Abstract
Glioma is a common tumor originating in the brain that has a high mortality rate. Temozolomide (TMZ) is the first-line treatment for high-grade gliomas. However, a large proportion of gliomas are resistant to TMZ, posing a great challenge to their treatment. In the study, the specific functions and mechanism(s) by which cortistatin (CORT) regulates TMZ resistance and glioma progression were evaluated. The decreased expression of CORT was detected in glioma tissues, and highly expressed CORT was associated with a better survival rate in patients with glioma. CORT overexpression notably decreased the capacity of glioma cells to proliferate and migrate in vitro and to form tumors in vivo. CORT overexpression also markedly suppressed the viability and enhanced the apoptosis of TMZ-resistant U251 cells by regulating MGMT, p21, and Puma expression. Importantly, CORT overexpression reduced the resistance of gliomas to TMZ in vivo. CORT expression was negatively correlated with MGMT expression in both glioma tissues and cells, and it was found that CORT inhibited NF-κB pathway activation in glioma cells, thereby inhibiting MGMT expression. In conclusion, CORT regulates glioma cell growth, migration, apoptosis, and TMZ resistance by weakening the activity of NF-κB/p65 and thereby regulating MGMT expression. The CORT/NF-κB/MGMT axis might be regarded as a molecular mechanism contributing to the resistance of glioma to TMZ. Our data also suggest that CORT regulates the viability and metastatic potential of glioma cells, independent of its effects on TMZ resistance, providing evidence of novel therapeutic targets for glioma that should be evaluated in further studies.
Collapse
Affiliation(s)
- Zongze He
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Bo Peng
- Department of Rehabilitation Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Qi Wang
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jie Tian
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Ping Liu
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jie Feng
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Longyi Chen
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Ping Jia
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jian Tang
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| |
Collapse
|
3
|
Serrano-Martínez I, Pedreño M, Castillo-González J, Ferraz-de-Paula V, Vargas-Rodríguez P, Forte-Lago I, Caro M, Campos-Salinas J, Villadiego J, Peñalver P, Morales JC, Delgado M, González-Rey E. Cortistatin as a Novel Multimodal Therapy for the Treatment of Parkinson's Disease. Int J Mol Sci 2024; 25:694. [PMID: 38255772 PMCID: PMC10815070 DOI: 10.3390/ijms25020694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is a complex disorder characterized by the impairment of the dopaminergic nigrostriatal system. PD has duplicated its global burden in the last few years, becoming the leading neurological disability worldwide. Therefore, there is an urgent need to develop innovative approaches that target multifactorial underlying causes to potentially prevent or limit disease progression. Accumulating evidence suggests that neuroinflammatory responses may play a pivotal role in the neurodegenerative processes that occur during the development of PD. Cortistatin is a neuropeptide that has shown potent anti-inflammatory and immunoregulatory effects in preclinical models of autoimmune and neuroinflammatory disorders. The goal of this study was to explore the therapeutic potential of cortistatin in a well-established preclinical mouse model of PD induced by acute exposure to the neurotoxin 1-methil-4-phenyl1-1,2,3,6-tetrahydropyridine (MPTP). We observed that treatment with cortistatin mitigated the MPTP-induced loss of dopaminergic neurons in the substantia nigra and their connections to the striatum. Consequently, cortistatin administration improved the locomotor activity of animals intoxicated with MPTP. In addition, cortistatin diminished the presence and activation of glial cells in the affected brain regions of MPTP-treated mice, reduced the production of immune mediators, and promoted the expression of neurotrophic factors in the striatum. In an in vitro model of PD, treatment with cortistatin also demonstrated a reduction in the cell death of dopaminergic neurons that were exposed to the neurotoxin. Taken together, these findings suggest that cortistatin could emerge as a promising new therapeutic agent that combines anti-inflammatory and neuroprotective properties to regulate the progression of PD at multiple levels.
Collapse
Affiliation(s)
- Ignacio Serrano-Martínez
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Marta Pedreño
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Julia Castillo-González
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Viviane Ferraz-de-Paula
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Pablo Vargas-Rodríguez
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Irene Forte-Lago
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Marta Caro
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Jenny Campos-Salinas
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Javier Villadiego
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain;
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.P.); (J.C.M.)
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.P.); (J.C.M.)
| | - Mario Delgado
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Elena González-Rey
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| |
Collapse
|
4
|
Castillo-González J, Ruiz JL, Serrano-Martínez I, Forte-Lago I, Ubago-Rodriguez A, Caro M, Pérez-Gómez JM, Benítez-Troncoso A, Andrés-León E, Sánchez-Navarro M, Luque RM, González-Rey E. Cortistatin deficiency reveals a dysfunctional brain endothelium with impaired gene pathways, exacerbated immune activation, and disrupted barrier integrity. J Neuroinflammation 2023; 20:226. [PMID: 37794493 PMCID: PMC10548650 DOI: 10.1186/s12974-023-02908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Brain activity governing cognition and behaviour depends on the fine-tuned microenvironment provided by a tightly controlled blood-brain barrier (BBB). Brain endothelium dysfunction is a hallmark of BBB breakdown in most neurodegenerative/neuroinflammatory disorders. Therefore, the identification of new endogenous molecules involved in endothelial cell disruption is essential to better understand BBB dynamics. Cortistatin is a neuroimmune mediator with anti-inflammatory and neuroprotective properties that exerts beneficial effects on the peripheral endothelium. However, its role in the healthy and injured brain endothelium remains to be evaluated. Herein, this study aimed to investigate the potential function of endogenous and therapeutic cortistatin in regulating brain endothelium dysfunction in a neuroinflammatory/neurodegenerative environment. METHODS Wild-type and cortistatin-deficient murine brain endothelium and human cells were used for an in vitro barrier model, where a simulated ischemia-like environment was mimicked. Endothelial permeability, junction integrity, and immune response in the presence and absence of cortistatin were evaluated using different size tracers, immunofluorescence labelling, qPCR, and ELISA. Cortistatin molecular mechanisms underlying brain endothelium dynamics were assessed by RNA-sequencing analysis. Cortistatin role in BBB leakage was evaluated in adult mice injected with LPS. RESULTS The endogenous lack of cortistatin predisposes endothelium weakening with increased permeability, tight-junctions breakdown, and dysregulated immune activity. We demonstrated that both damaged and uninjured brain endothelial cells isolated from cortistatin-deficient mice, present a dysregulated and/or deactivated genetic programming. These pathways, related to basic physiology but also crucial for the repair after damage (e.g., extracellular matrix remodelling, angiogenesis, response to oxygen, signalling, and metabolites transport), are dysfunctional and make brain endothelial barrier lacking cortistatin non-responsive to any further injury. Treatment with cortistatin reversed in vitro hyperpermeability, tight-junctions disruption, inflammatory response, and reduced in vivo BBB leakage. CONCLUSIONS The neuropeptide cortistatin has a key role in the physiology of the cerebral microvasculature and its presence is crucial to develop a canonical balanced response to damage. The reparative effects of cortistatin in the brain endothelium were accompanied by the modulation of the immune function and the rescue of barrier integrity. Cortistatin-based therapies could emerge as a novel pleiotropic strategy to ameliorate neuroinflammatory/neurodegenerative disorders with disrupted BBB.
Collapse
Affiliation(s)
- Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - José Luis Ruiz
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Ignacio Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Irene Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Ana Ubago-Rodriguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Marta Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Jesús Miguel Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | | | - Eduardo Andrés-León
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Macarena Sánchez-Navarro
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain.
| |
Collapse
|
5
|
Therapeutic Effect of a Latent Form of Cortistatin in Experimental Inflammatory and Fibrotic Disorders. Pharmaceutics 2022; 14:pharmaceutics14122785. [PMID: 36559278 PMCID: PMC9784182 DOI: 10.3390/pharmaceutics14122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Cortistatin is a cyclic neuropeptide that recently emerged as an attractive therapeutic factor for treating inflammatory, autoimmune, fibrotic, and pain disorders. Despite of its efficiency and apparent safety in experimental preclinical models, its short half-life in body fluids and its potential pleiotropic effects, due to its promiscuity for several receptors expressed in various cells and tissues, represent two major drawbacks for the clinical translation of cortistatin-based therapies. Therefore, the design of new strategies focused on increasing the stability, bioavailability, and target specificity of cortistatin are lately demanded by the industry. Here, we generated by molecular engineering a new cortistatin-based prodrug formulation that includes, beside the bioactive cortistatin, a molecular-shield provided by the latency-associated protein of the transforming growth factor-β1 and a cleavage site specifically recognized by metalloproteinases, which are abundant in inflammatory/fibrotic foci. Using different models of sepsis, inflammatory bowel disease, scleroderma, and pulmonary fibrosis, we demonstrated that this latent form of cortistatin was a highly effective protection against these severe disorders. Noteworthy, from a therapeutic point of view, is that latent cortistatin seems to require significantly lower doses and fewer administrations than naive cortistatin to reach the same efficacy. Finally, the metalloproteinase-cleavage site was essential for the latent molecule to exert its therapeutic action. In summary, latent cortistatin emerges as a promising innovative therapeutic tool for treating chronic diseases of different etiologies with difficult clinical solutions and as a starting point for a rational development of prodrugs based on the use of bioactive peptides.
Collapse
|
6
|
Cortistatin-14 Exerts Neuroprotective Effect Against Microglial Activation, Blood-brain Barrier Disruption, and Cognitive Impairment in Sepsis-associated Encephalopathy. J Immunol Res 2022; 2022:3334145. [PMID: 36148090 PMCID: PMC9489378 DOI: 10.1155/2022/3334145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a life-threatening deterioration of mental status in relation to long-term and disabling cognitive dysfunction that is common in intensive care units worldwide. Cortistatin-14 is a neuropeptide structurally resembling somastostatin, which has been proven to play a crucial role in sepsis. The present study aimed to explore the neuroprotective role of cortistatin-14 in sepsis-associated encephalopathy and its underlying mechanisms in a mouse model. A septic mice model was established using the cecal ligation and puncture (CLP) method. The novel object recognition test (NORT), open field test (OFT), elevated plus maze test (EPMT), and tail suspension test (TST) were used to explore the behavioral performance of the mice. Transmission electron microscopy was used to observe the microstructure of the blood-brain barrier (BBB). Evans Blue staining was used to examine the integrity of the BBB. Immunofluorescence was used to examine the morphology and infiltration of microglia. A multiplex cytokine bead array assay was used to determine cytokine and chemokine levels in mouse serum and brain tissues. NORT revealed that cortistatin treatment improved cognitive impairment in septic mice. OFT, EPMT, and TST indicated that cortistatin-14 relieved the anxiety-related behaviors of CLP mice. In addition, cortistatin-14 treatment decreased the levels of various inflammatory cytokines, including interleukin-1β, interleukin-6, interferon-γ, and tumor necrosis factor-α in both the serum and brain of septic mice. Cortistatin reduced sepsis-induced blood-brain barrier disruption and inhibited microglial activation after the onset of sepsis. Cortistatin exerts neuroprotective effects against SAE and cognitive dysfunction in a CLP-induced mouse model of sepsis.
Collapse
|
7
|
Liang X, Mao Q, Huang D, Tang J, Zheng J. Overexpression of cortistatin alleviates oxygen/glucose-deprivation-induced ER stress and prompts neural stem cell proliferation via SSTR2. Exp Mol Pathol 2020; 113:104351. [PMID: 31809712 DOI: 10.1016/j.yexmp.2019.104351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/06/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022]
Abstract
Cerebral infarction (CI), a blood circulatory disorder, causes a high mortality and disability rate worldwide. Intriguingly, a newly discovered neuropeptide, Cortistatin (CST), has been indicated to inhibit the cortical activity. In our research, we aimed to explore the functional relevance of CST in neural stem cells (NSCs) in CI rats. The expression of CST was determined in NSCs induced by oxygen-glucose deprivation (OGD). NSCs isolated from the embryonic rat brain were treated with OGD to establish an in vitro CI model while dithiothreitol (DTT) was introduced to induce endoplasmic reticulum stress (ERS), which were evaluated by assessment of GRP94, caspase-12 and CHOP expression. Then CST expression was restored by transfection of oe-CST, followed by assessment of NSC proliferation ability and cytotoxicity. Finally, the expression of CST and its receptor Somatostatin receptor subtype 2 (SSTR2) was quantified for mechanism exploration. CST was downregulated in CI, which was further confirmed in NSCs under OGD treatment. Overexpressed CST was found to promote cell activity and attenuate OGD-induced cytotoxicity of NSCs. Meanwhile, it was observed that the injured proliferation ability of NSCs was restored by CST overexpression. Besides, lower expression of GRP94, caspase-12 and CHOP was indicative of suppressed occurrence of ERS by CST. Mechanically, CST inhibited ERS through SSTR2. CST could facilitate the proliferation of NSCs in CI induced by OGD, ultimately highlighting a novel therapeutic target for CI treatment.
Collapse
Affiliation(s)
- Xiulin Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Qing Mao
- Department of Cardiology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, PR China
| | - Donghong Huang
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, PR China
| | - Jian Tang
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, PR China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| |
Collapse
|
8
|
Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases. Mediators Inflamm 2017; 2017:5048616. [PMID: 28154473 PMCID: PMC5244030 DOI: 10.1155/2017/5048616] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/26/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.
Collapse
|
9
|
Shi ZY, Liu Y, Dong L, Zhang B, Zhao M, Liu WX, Zhang X, Yin XH. Cortistatin Improves Cardiac Function After Acute Myocardial Infarction in Rats by Suppressing Myocardial Apoptosis and Endoplasmic Reticulum Stress. J Cardiovasc Pharmacol Ther 2016; 22:83-93. [PMID: 27093952 DOI: 10.1177/1074248416644988] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objectives: The endoplasmic reticulum (ER) stress-induced apoptotic pathway is associated with the development of acute myocardial infarction (AMI). Cortistatin (CST) is a novel bioactive peptide that inhibits apoptosis-related injury. Therefore, we investigated the cardioprotective effects and potential mechanisms of CST in a rat model of AMI. Methods: Male Wistar rats were randomly divided into sham, AMI, and AMI + CST groups. Cardiac function and the degree of infarction were evaluated by echocardiography, cardiac troponin I activity, and 2,3,5-triphenyl-2H-tetrazolium chloride staining after 7 days. The expression of CST, ER stress markers, and apoptotic markers was examined using immunohistochemistry and Western blotting. Results: Compared to the AMI group, the AMI + CST group exhibited markedly better cardiac function and a lower degree of infarction. Electron microscopy and terminal deoxynucleotidyl transferase dUTP nick end labeling confirmed that myocardial apoptosis occurred after AMI. Cortistatin treatment reduced the expression of caspase 3, cleaved caspase 3, and Bax (proapoptotic proteins) and promoted the expression of Bcl-2 (antiapoptotic protein). In addition, the reduced expression of glucose-regulated protein 94 (GRP94), glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding proteins homologous protein, and caspase 12 indicated that ER stress and the apoptotic pathway associated with ER stress were suppressed. Conclusions: Exogenous CST has a notable cardioprotective effect after AMI in a rat model in that it improves cardiac function by suppressing ER stress and myocardial apoptosis.
Collapse
Affiliation(s)
- Zhi-Yu Shi
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Liu
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Dong
- Department of Pathology, The Second Hospital of Harbin, Harbin, Heilongjiang, China
| | - Bo Zhang
- Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Meng Zhao
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wen-Xiu Liu
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Zhang
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin-Hua Yin
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Lin SH, Huang YN, Kao JH, Tien LT, Tsai RY, Wong CS. Melatonin reverses morphine tolerance by inhibiting microglia activation and HSP27 expression. Life Sci 2016; 152:38-43. [PMID: 27012766 DOI: 10.1016/j.lfs.2016.03.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/06/2016] [Accepted: 03/17/2016] [Indexed: 01/14/2023]
Abstract
AIMS Melatonin has been reported to attenuate opioid tolerance. In this study, we explored the possible mechanism of melatonin in diminishing morphine tolerance. MAIN METHODS Two intrathecal (i.t.) catheters were implanted in male Wistar rats for drug delivery. One was linked to a mini-osmotic pump for morphine or saline infusion. On the seventh day, 50μg of melatonin or vehicle was injected through the other catheter instantly after discontinuation of morphine or saline infusion; 3h later, 15μg of morphine or saline was injected. The antinociceptive response was then measured using the tail-flick test every 30min for 120min. KEY FINDINGS The results showed that chronic morphine infusion elicited antinociceptive tolerance and upregulated heat shock protein 27 (HSP27) expression in the dorsal horn of the rat spinal cord. Melatonin pretreatment partially restored morphine's antinociceptive effect in morphine-tolerant rats and reversed morphine-induced HSP27 upregulation. In addition, chronic morphine infusion induced microglial cell activation and was reversed by melatonin treatment. SIGNIFICANCE The present study provides evidence that melatonin, acting via inhibiting morphine-induced neuroinflammation, can be useful as a therapeutic adjuvant for patients under long-term opioid treatment for pain relief.
Collapse
Affiliation(s)
- Sheng-Hsiung Lin
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei City, Taiwan; Medical Service Office, Tri-Service General Hospital Songshang Branch, Taipei City, Taiwan
| | - Ya-Ni Huang
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan City, Taiwan
| | - Jen-Hsin Kao
- Department of Anesthesiology, Cathay General Hospital, Taipei City, Taiwan; Cathay Medical Research Institute, Cathay General Hospital, Taipei City, Taiwan
| | - Lu-Tai Tien
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Ru-Yin Tsai
- Department of Nursing, Da-Yeh University, Changhua City, Taiwan
| | - Chih-Shung Wong
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei City, Taiwan; Department of Anesthesiology, Cathay General Hospital, Taipei City, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
11
|
Berczi I. Neuroprotection. INSIGHTS TO NEUROIMMUNE BIOLOGY 2016:258-275. [DOI: 10.1016/b978-0-12-801770-8.00012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Chiu CT, Wen LL, Pao HP, Yang LY, Huang YN, Wang JY. Reparixin attenuates neuronal injury in experimental Klebsiella pneumoniae meningoencephalitis through dual effects on neuroprotection and neuroinflammation. Neuropathol Appl Neurobiol 2015; 42:326-43. [PMID: 26245311 DOI: 10.1111/nan.12261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/30/2015] [Indexed: 11/29/2022]
Abstract
AIMS Bacterial meningitis causes high mortality and brain damage. The host immune response is associated with brain injury. Chemokine (C-X-C motif) (CXC) chemokines are neutrophil chemoattractants. This study focused on the beneficial effects of intracerebroventricular administration of reparixin, an inhibitor of chemokine (C-X-C motif) receptor (CXCR)1/2, to rats at 2 h following experimental Klebsiella pneumoniae meningoencephalitis. METHODS We used a previously established meningoencephalitis animal model in which Sprague-Dawley rats were infected by K. pneumoniae. Sham and infected animals were treated with vehicle or reparixin and sacrificed at various time points. Leukocyte infiltration into cerebrospinal fluid (CSF) and brain as well as gene and protein expression of chemokines and receptors, and neuronal apoptosis were examined. Primary cultures of neuron/glia were infected with K. pneumoniae as an in vitro model of meningoencephalitis. RESULTS Levels of chemokine (C-X-C motif) ligand (CXCL)2 in CSF time-dependently increased markedly as early as 2 h, and peaked at 8 h following infection and were much higher than those in serum collected simultaneously. Reparixin significantly reduced leukocyte infiltration into CSF and brain tissues, clinical illness, and brain cell apoptosis at 24 h. Reparixin reduced the elevated CSF concentrations of chemokines [CXCL1, CXCL2, chemokine (C-C motif) ligand (CCL)2 and CCL5] and proinflammatory cytokines. Reparixin also reduced the expression of mRNA of various chemokines, chemokine receptors and proinflammatory cytokines in infected brain tissues. Using primary cultures that are devoid of leukocytes, we further observed that reparixin attenuated the neuronal, but not microglial cell death after infection. CONCLUSIONS Reparixin not only reduces amplified inflammation, but also provides direct neuroprotective effects in K. pneumoniae meningoencephalitis.
Collapse
Affiliation(s)
- Chien-Tsai Chiu
- Department of Neurological Surgery, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Neurosurgery, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Li-Li Wen
- Clinical Laboratory, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Hsin-Ping Pao
- Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ling-Yu Yang
- Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Ni Huang
- Department of Nursing, Hsin Sheng College of Medical Care and Management, Taoyuan, Taiwan
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Gonzalez-Rey E, Pedreño M, Delgado-Maroto V, Souza-Moreira L, Delgado M. Lulling immunity, pain, and stress to sleep with cortistatin. Ann N Y Acad Sci 2015; 1351:89-98. [PMID: 25951888 DOI: 10.1111/nyas.12789] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cortistatin is a neuropeptide isolated from cortical brain regions, showing high structural homology and sharing many functions with somatostatin. However, cortistatin exerts unique functions in the central nervous and immune systems, including decreasing locomotor activity, inducing sleep-promoting effects, and deactivating inflammatory and T helper (TH )1/TH 17-driven responses in preclinical models of sepsis, arthritis, multiple sclerosis, and colitis. Besides its release by cortical and hippocampal interneurons, cortistatin is produced by macrophages, lymphocytes, and peripheral nociceptive neurons in response to inflammatory stimuli, supporting a physiological role of cortistatin in the immune and nociceptive systems. Cortistatin-deficient mice have been shown to have exacerbated nociceptive responses to neuropathic and inflammatory pain sensitization. However, a paradoxical effect has been observed in studies of immune disorders, in which, despite showing competent inflammatory/autoreactive responses, cortistatin-deficient mice were partially resistant to systemic autoimmunity and inflammation. This unexpected phenotype was associated with elevated circulating glucocorticoids and anxiety-like behavior. These findings support cortistatin as a novel multimodal therapeutic approach to treat autoimmunity and clinical pain and identify it as a key endogenous component of the neuroimmune system related to stress responses.
Collapse
Affiliation(s)
- Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| | - Marta Pedreño
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| | - Virginia Delgado-Maroto
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| | | | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
14
|
Huang YN, Lai CC, Chiu CT, Lin JJ, Wang JY. L-ascorbate attenuates the endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation and NF-κB translocation in cortical neurons/glia Cocultures. PLoS One 2014; 9:e97276. [PMID: 24983461 PMCID: PMC4077707 DOI: 10.1371/journal.pone.0097276] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 04/17/2014] [Indexed: 01/25/2023] Open
Abstract
In response to acute insults to the central nervous system, such as pathogen invasion or neuronal injuries, glial cells become activated and secrete inflammatory mediators such as nitric oxide (NO), cytokines, and chemokines. This neuroinflammation plays a crucial role in the pathophysiology of chronic neurodegenerative diseases. Endogenous ascorbate levels are significantly decreased among patients with septic encephalopathy. Using the bacterial endotoxin lipopolysaccharide (LPS) to induce neuroinflammation in primary neuron/glia cocultures, we investigated how L-ascorbate (vitamin C; Vit. C) affected neuroinflammation. LPS (100 ng/ml) induced the expression of inducible NO synthase (iNOS) and the production of NO, interleukin (IL)-6, and macrophage inflammatory protein-2 (MIP-2/CXCL2) in a time-dependent manner; however, cotreatment with Vit. C (5 or 10 mM) attenuated the LPS-induced iNOS expression and production of NO, IL-6, and MIP-2 production. The morphological features revealed after immunocytochemical staining confirmed that Vit. C suppressed LPS-induced astrocytic and microglial activation. Because Vit. C can be transported into neurons and glia via the sodium-dependent Vit. C transporter-2, we examined how Vit. C affected LPS-activated intracellular signaling in neuron/glia cocultures. The results indicated the increased activation (caused by phosphorylation) of mitogen-activated protein kinases (MAPKs), such as p38 at 30 min and extracellular signal-regulated kinases (ERKs) at 180 min after LPS treatment. The inhibition of p38 and ERK MAPK suppressed the LPS-induced production of inflammatory mediators. Vit. C also inhibited the LPS-induced activation of p38 and ERK. Combined treatments of Vit. C and the inhibitors of p38 and ERK yielded no additional inhibition compared with using the inhibitors alone, suggesting that Vit. C functions through the same signaling pathway (i.e., MAPK) as these inhibitors. Vit. C also reduced LPS-induced IκB-α degradation and NF-κB translocation. Thus, Vit. C suppressed the LPS-stimulated production of inflammatory mediators in neuron/glia cocultures by inhibiting the MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Ya-Ni Huang
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Chien-Cheng Lai
- Division of Orthopedics, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chien-Tsai Chiu
- Department of Neurosurgery, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Jhen-Jhe Lin
- Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Parthasarathy G, Philipp MT. Review: apoptotic mechanisms in bacterial infections of the central nervous system. Front Immunol 2012; 3:306. [PMID: 23060884 PMCID: PMC3463897 DOI: 10.3389/fimmu.2012.00306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/15/2012] [Indexed: 01/18/2023] Open
Abstract
In this article we review the apoptotic mechanisms most frequently encountered in bacterial infections of the central nervous system (CNS). We focus specifically on apoptosis of neural cells (neurons and glia), and provide first an overview of the phenomenon of apoptosis itself and its extrinsic and intrinsic pathways. We then describe apoptosis in the context of infectious diseases and inflammation caused by bacteria, and review its role in the pathogenesis of the most relevant bacterial infections of the CNS.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Covington, LA, USA
| | | |
Collapse
|
16
|
Abstract
Brain and spinal cord traumas include blunt and penetrating trauma, disease, and required surgery. Such traumas trigger events such as inflammation, infiltration of inflammatory and other cells, oxidative stress, acidification, excitotoxicity, ischemia, and the loss of calcium homeostasis, all of which cause neurotoxicity and neuron death. To prevent trauma-induced neurological deficits and death, each of the many neurotoxic events that occur in parallel or sequentially must be minimized or prevented. Although neuroprotective techniques have been developed that block single neurotoxic events, most provide only limited neuroprotection and are only applied singly. However, because many neurotoxicity triggers arise from common events, an approach for invoking more effective neuroprotection is to apply multiple neuroprotective methods simultaneously before the many neurotoxic triggers and cascades are initiated and become irreversible. This paper first discusses some triggers of neurotoxicity and neuroprotective mechanisms that block them, including hypothermia, alkalinization, and the administration of adenosine. It then examines how the simultaneous application of these techniques provides significantly greater neuroprotection than is provided by any technique alone. The paper also stresses the importance of determining whether the neuroprotection provided by these techniques can be further enhanced by combining them with additional techniques, such as the systemic administration of glucocorticoids. Finally, the paper stresses the absolute critical importance of applying these techniques within the "golden hour" following trauma, before the many neurotoxic events and cascades are manifest and before the neurotoxic cascades become irreversible.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|