1
|
Mutemi DD, Tuju J, Ogwang R, Nyamako L, Wambui KM, Cruz IR, Villner P, Yman V, Kinyanjui SM, Rooth I, Ngasala B, Färnert A, Osier FHA. Antibody-Dependent Respiratory Burst against Plasmodium falciparum Merozoites in Individuals Living in an Area with Declining Malaria Transmission. Vaccines (Basel) 2024; 12:203. [PMID: 38400186 PMCID: PMC10892224 DOI: 10.3390/vaccines12020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Malaria transmission intensity affects the development of naturally acquired immunity to malaria. An absolute correlate measure of protection against malaria is lacking. However, antibody-mediated functions against Plasmodium falciparum correlate with protection against malaria. In children, antibody-mediated functions against P. falciparum decline with reduced exposure. It is unclear whether adults maintain antibody-mediated functions as malaria transmission declines. This study assessed antibody-dependent respiratory burst (ADRB) in individuals from an area with declining malaria transmission. In an age-matched analysis, we compare ADRB activity during high versus low malaria transmission periods. Age significantly predicted higher ADRB activity in the high (p < 0.001) and low (p < 0.001) malaria transmission periods. ADRB activity was higher during the high compared to the low malaria transmission period in older children and adults. Only older adults during the high malaria transmission period had their median ADRB activity above the ADRB cut-off. Ongoing P. falciparum infection influenced ADRB activity during the low (p = 0.01) but not the high (p = 0.29) malaria transmission period. These findings propose that naturally acquired immunity to P. falciparum is affected in children and adults as malaria transmission declines, implying that vaccines will be necessary to induce and maintain protection against malaria.
Collapse
Affiliation(s)
- Doreen D. Mutemi
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam 11102, Tanzania
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - Lydia Nyamako
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - Kennedy M. Wambui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Ivette R. Cruz
- Division of Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Pär Villner
- Division of Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Infectious Diseases, Södersjukhuset, 118 61 Stockholm, Sweden
| | - Samson M. Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
- Pwani University Bioscience Research Centre, Pwani University, Kilifi 80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
- School of Business Studies, Strathmore University, Nairobi 0200, Kenya
| | - Ingegerd Rooth
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Nyamisati Malaria Research Group, Pwani 61621, Tanzania
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam 11102, Tanzania
- Department of Women’s and Children’s Health, International Maternal and Child Health, Uppsala University, 751 05 Uppsala, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Faith H. A. Osier
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
- Centre of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
2
|
Huynh LN, Tran LB, Nguyen HS, Ho VH, Parola P, Nguyen XQ. Mosquitoes and Mosquito-Borne Diseases in Vietnam. INSECTS 2022; 13:1076. [PMID: 36554986 PMCID: PMC9781666 DOI: 10.3390/insects13121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Mosquito-borne diseases pose a significant threat to humans in almost every part of the world. Key factors such as global warming, climatic conditions, rapid urbanisation, frequent human relocation, and widespread deforestation significantly increase the number of mosquitoes and mosquito-borne diseases in Vietnam, and elsewhere around the world. In southeast Asia, and notably in Vietnam, national mosquito control programmes contribute to reducing the risk of mosquito-borne disease transmission, however, malaria and dengue remain a threat to public health. The aim of our review is to provide a complete checklist of all Vietnamese mosquitoes that have been recognised, as well as an overview of mosquito-borne diseases in Vietnam. A total of 281 mosquito species of 42 subgenera and 22 genera exist in Vietnam. Of those, Anopheles, Aedes, and Culex are found to be potential vectors for mosquito-borne diseases. Major mosquito-borne diseases in high-incidence areas of Vietnam include malaria, dengue, and Japanese encephalitis. This review may be useful to entomological researchers for future surveys of Vietnamese mosquitoes and to decision-makers responsible for vector control tactics.
Collapse
Affiliation(s)
- Ly Na Huynh
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Long Bien Tran
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Hong Sang Nguyen
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Van Hoang Ho
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Xuan Quang Nguyen
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| |
Collapse
|
3
|
Cutts JC, O'Flaherty K, Zaloumis SG, Ashley EA, Chan JA, Onyamboko MA, Fanello C, Dondorp AM, Day NP, Phyo AP, Dhorda M, Imwong M, Fairhurst RM, Lim P, Amaratunga C, Pukrittayakamee S, Hien TT, Htut Y, Mayxay M, Abdul Faiz M, Takashima E, Tsuboi T, Beeson JG, Nosten F, Simpson JA, White NJ, Fowkes FJI. Comparison of antibody responses and parasite clearance in artemisinin therapeutic efficacy studies in Democratic Republic of Congo and Asia. J Infect Dis 2022; 226:324-331. [PMID: 35703955 PMCID: PMC9400417 DOI: 10.1093/infdis/jiac232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/12/2022] [Indexed: 12/05/2022] Open
Abstract
Background Understanding the effect of immunity on Plasmodium falciparum clearance is essential for interpreting therapeutic efficacy studies designed to monitor emergence of artemisinin drug resistance. In low-transmission areas of Southeast Asia, where resistance has emerged, P. falciparum antibodies confound parasite clearance measures. However, variation in naturally acquired antibodies across Asian and sub-Saharan African epidemiological contexts and their impact on parasite clearance re yet to be quantified. Methods In an artemisinin therapeutic efficacy study, antibodies to 12 pre-erythrocytic and erythrocytic P. falciparum antigens were measured in 118 children with uncomplicated P. falciparum malaria in the Democratic Republic of Congo (DRC) and compared with responses in patients from Asian sites, described elsewhere. Results Parasite clearance half-life was shorter in DRC patients (median, 2 hours) compared with most Asian sites (median, 2–7 hours), but P. falciparum antibody levels and seroprevalences were similar. There was no evidence for an association between antibody seropositivity and parasite clearance half-life (mean difference between seronegative and seropositive, −0.14 to +0.40 hour) in DRC patients. Conclusions In DRC, where artemisinin remains highly effective, the substantially shorter parasite clearance time compared with Asia was not explained by differences in the P. falciparum antibody responses studied.
Collapse
Affiliation(s)
- Julia C Cutts
- Burnet Institute, Melbourne, Victoria 3004, Australia.,Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | | | - Sophie G Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - Jo Anne Chan
- Burnet Institute, Melbourne, Victoria 3004, Australia.,Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.,Department of Immunology, Monash University, Melbourne Australia
| | - Marie A Onyamboko
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | - Caterina Fanello
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Nicholas P Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | | | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Worldwide Antimalarial Resistance Network, Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Pharath Lim
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Chanaki Amaratunga
- Worldwide Antimalarial Resistance Network, Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | | | - Tran Tinh Hien
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Ye Htut
- Department of Medical Research, Yangon, Myanmar
| | - Mayfong Mayxay
- Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Institute of Research and Education Development, University of Health Sciences, Vientiane, Lao PDR.,Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - M Abdul Faiz
- Malaria Research Group & Dev Care Foundation, Chittagong, Bangladesh
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria 3004, Australia.,Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.,Department of Immunology, Monash University, Melbourne Australia
| | - Francois Nosten
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Freya J I Fowkes
- Burnet Institute, Melbourne, Victoria 3004, Australia.,Centre for Epidemiology and Biostatistics, Melbourne, School of Population and Global Health, The University of Melbourne, Melbourne, Australia.,Department of Infectious Diseases and Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
4
|
Ataba E, Dorkenoo AM, Nguepou CT, Bakai T, Tchadjobo T, Kadzahlo KD, Yakpa K, Atcha-Oubou T. Potential Emergence of Plasmodium Resistance to Artemisinin Induced by the Use of Artemisia annua for Malaria and COVID-19 Prevention in Sub-African Region. Acta Parasitol 2022; 67:55-60. [PMID: 34797496 PMCID: PMC8602884 DOI: 10.1007/s11686-021-00489-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022]
Abstract
Plasmodium resistance to antimalarial drugs is an obstacle to the elimination of malaria in endemic areas. This situation is particularly dramatic for Africa, which accounts for nearly 92% of malaria cases worldwide. Drug pressure has been identified as a key factor in the emergence of antimalarial drug resistance. Indeed, this pressure is favoured by several factors, including the use of counterfeit forms of antimalarials, inadequate prescription controls, poor adherence to treatment regimens, dosing errors, and the increasing use of other forms of unapproved antimalarials. This resistance has led to the replacement of chloroquine (CQ) by artemisinin-based combination therapies (ACTs) which are likely to become ineffective in the coming years due to the uncontrolled use of Artemisia annua in the sub-Saharan African region for malaria prevention and COVID-19. The use of Artemisia annua for the prevention of malaria and COVID-19 could be an important factor in the emergence of resistance to Artemisinin-based combination therapies.
Collapse
Affiliation(s)
- Essoham Ataba
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA) /Unité de Recherche en Immunologie et Immunomodulation (UR2IM), Université de Lomé, Boulevard Eyadema, 01BP 1515 Lomé, Togo
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé de l’Hygiène Publique et de l’Accès Universel Aux Soins, Quartier Administratif, 01BP 518 Lomé, Togo
| | - Ameyo M. Dorkenoo
- Faculté des Sciences de la Santé, Université de Lomé, Boulevard Eyadema, 01BP 1515 Lomé, Togo
| | - Christèle Tchopba Nguepou
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA) /Unité de Recherche en Immunologie et Immunomodulation (UR2IM), Université de Lomé, Boulevard Eyadema, 01BP 1515 Lomé, Togo
| | - Tchaa Bakai
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé de l’Hygiène Publique et de l’Accès Universel Aux Soins, Quartier Administratif, 01BP 518 Lomé, Togo
| | - Tchassama Tchadjobo
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé de l’Hygiène Publique et de l’Accès Universel Aux Soins, Quartier Administratif, 01BP 518 Lomé, Togo
| | - Komla Dovenè Kadzahlo
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé de l’Hygiène Publique et de l’Accès Universel Aux Soins, Quartier Administratif, 01BP 518 Lomé, Togo
| | - Kossi Yakpa
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé de l’Hygiène Publique et de l’Accès Universel Aux Soins, Quartier Administratif, 01BP 518 Lomé, Togo
| | - Tinah Atcha-Oubou
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé de l’Hygiène Publique et de l’Accès Universel Aux Soins, Quartier Administratif, 01BP 518 Lomé, Togo
| |
Collapse
|
5
|
Nsanzabana C. Time to scale up molecular surveillance for anti-malarial drug resistance in sub-saharan Africa. Malar J 2021; 20:401. [PMID: 34645475 PMCID: PMC8513315 DOI: 10.1186/s12936-021-03942-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/05/2021] [Indexed: 02/02/2023] Open
Abstract
Artemisinin resistance has emerged and spread in the Greater Mekong Sub-region (GMS), followed by artemisinin-based combination therapy failure, due to both artemisinin and partner drug resistance. More worrying, artemisinin resistance has been recently reported and confirmed in Rwanda. Therefore, there is an urgent need to strengthen surveillance systems beyond the GMS to track the emergence or spread of artemisinin and partner drug resistance in other endemic settings. Currently, anti-malarial drug efficacy is monitored primarily through therapeutic efficacy studies (TES). Even though essential for anti-malarial drug policy change, these studies are difficult to conduct, expensive, and may not detect the early emergence of resistance. Additionally, results from TES may take years to be available to the stakeholders, jeopardizing their usefulness. Molecular markers are additional and useful tools to monitor anti-malarial drug resistance, as samples collected on dried blood spots are sufficient to monitor known and validated molecular markers of resistance, and could help detecting and monitoring the early emergence of resistance. However, molecular markers are not monitored systematically by national malaria control programmes, and are often assessed in research studies, but not in routine surveillance. The implementation of molecular markers as a routine tool for anti-malarial drug resistance surveillance could greatly improve surveillance of anti-malarial drug efficacy, making it possible to detect resistance before it translates to treatment failures. When possible, ex vivo assays should be included as their data could be useful complementary, especially when no molecular markers are validated.
Collapse
Affiliation(s)
- Christian Nsanzabana
- Department of Medicine, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland. .,University of Basel, P.O. Box, 4003, Basel, Switzerland.
| |
Collapse
|
6
|
Imported Malaria in Countries where Malaria Is Not Endemic: a Comparison of Semi-immune and Nonimmune Travelers. Clin Microbiol Rev 2020; 33:33/2/e00104-19. [PMID: 32161068 DOI: 10.1128/cmr.00104-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The continuous increase in long-distance travel and recent large migratory movements have changed the epidemiological characteristics of imported malaria in countries where malaria is not endemic (here termed non-malaria-endemic countries). While malaria was primarily imported to nonendemic countries by returning travelers, the proportion of immigrants from malaria-endemic regions and travelers visiting friends and relatives (VFRs) in malaria-endemic countries has continued to increase. VFRs and immigrants from malaria-endemic countries now make up the majority of malaria patients in many nonendemic countries. Importantly, this group is characterized by various degrees of semi-immunity to malaria, resulting from repeated exposure to infection and a gradual decline of protection as a result of prolonged residence in non-malaria-endemic regions. Most studies indicate an effect of naturally acquired immunity in VFRs, leading to differences in the parasitological features, clinical manifestation, and odds for severe malaria and clinical complications between immune VFRs and nonimmune returning travelers. There are no valid data indicating evidence for differing algorithms for chemoprophylaxis or antimalarial treatment in semi-immune versus nonimmune malaria patients. So far, no robust biomarkers exist that properly reflect anti-parasite or clinical immunity. Until they are found, researchers should rigorously stratify their study results using surrogate markers, such as duration of time spent outside a malaria-endemic country.
Collapse
|
7
|
Davis SZ, Singh PP, Vendrely KM, Shoue DA, Checkley LA, McDew-White M, Button-Simons KA, Cassady Z, Sievert MAC, Foster GJ, Nosten FH, Anderson TJC, Ferdig MT. The extended recovery ring-stage survival assay provides a superior association with patient clearance half-life and increases throughput. Malar J 2020; 19:54. [PMID: 32005233 PMCID: PMC6995136 DOI: 10.1186/s12936-020-3139-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/24/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Tracking and understanding artemisinin resistance is key for preventing global setbacks in malaria eradication efforts. The ring-stage survival assay (RSA) is the current gold standard for in vitro artemisinin resistance phenotyping. However, the RSA has several drawbacks: it is relatively low throughput, has high variance due to microscopy readout, and correlates poorly with the current benchmark for in vivo resistance, patient clearance half-life post-artemisinin treatment. Here a modified RSA is presented, the extended Recovery Ring-stage Survival Assay (eRRSA), using 15 cloned patient isolates from Southeast Asia with a range of patient clearance half-lives, including parasite isolates with and without kelch13 mutations. METHODS Plasmodium falciparum cultures were synchronized with single layer Percoll during the schizont stage of the intraerythrocytic development cycle. Cultures were left to reinvade to early ring-stage and parasitaemia was quantified using flow cytometry. Cultures were diluted to 2% haematocrit and 0.5% parasitaemia in a 96-well plate to start the assay, allowing for increased throughput and decreased variability between biological replicates. Parasites were treated with 700 nM of dihydroartemisinin or 0.02% dimethyl sulfoxide (DMSO) for 6 h, washed three times in drug-free media, and incubated for 66 or 114 h, when samples were collected and frozen for PCR amplification. A SYBR Green-based quantitative PCR method was used to quantify the fold-change between treated and untreated samples. RESULTS 15 cloned patient isolates from Southeast Asia with a range of patient clearance half-lives were assayed using the eRRSA. Due to the large number of pyknotic and dying parasites at 66 h post-exposure (72 h sample), parasites were grown for an additional cell cycle (114 h post-exposure, 120 h sample), which drastically improved correlation with patient clearance half-life compared to the 66 h post-exposure sample. A Spearman correlation of - 0.8393 between fold change and patient clearance half-life was identified in these 15 isolates from Southeast Asia, which is the strongest correlation reported to date. CONCLUSIONS eRRSA drastically increases the efficiency and accuracy of in vitro artemisinin resistance phenotyping compared to the traditional RSA, which paves the way for extensive in vitro phenotyping of hundreds of artemisinin resistant parasites.
Collapse
Affiliation(s)
- Sage Z Davis
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.,Molecular, Cell, and Systems Biology Department, University of California Riverside, Riverside, CA, USA
| | - Puspendra P Singh
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Katelyn M Vendrely
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Douglas A Shoue
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Lisa A Checkley
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Katrina A Button-Simons
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Zione Cassady
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Mackenzie A C Sievert
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Gabriel J Foster
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | | | - Michael T Ferdig
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
8
|
Ozonide Antimalarial Activity in the Context of Artemisinin-Resistant Malaria. Trends Parasitol 2019; 35:529-543. [PMID: 31176584 DOI: 10.1016/j.pt.2019.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/02/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
Abstract
The ozonides are one of the most advanced drug classes in the antimalarial development pipeline and were designed to improve on limitations associated with current front-line artemisinin-based therapies. Like the artemisinins, the pharmacophoric peroxide bond of ozonides is essential for activity, and it appears that these antimalarials share a similar mode of action, raising the possibility of cross-resistance. Resistance to artemisinins is associated with Plasmodium falciparum mutations that allow resistant parasites to escape short-term artemisinin-mediated damage (elimination half-life ~1 h). Importantly, some ozonides (e.g., OZ439) have a sustained in vivo drug exposure profile, providing a major pharmacokinetic advantage over the artemisinin derivatives. Here, we describe recent progress made towards understanding ozonide antimalarial activity and discuss ozonide utility within the context of artemisinin resistance.
Collapse
|
9
|
Ricotta E, Kwan J. Artemisinin-Resistant Malaria as a Global Catastrophic Biological Threat. Curr Top Microbiol Immunol 2019; 424:33-57. [PMID: 31218504 DOI: 10.1007/82_2019_163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The global spread of artemisinin resistance brings with it the threat of incurable malaria. Already, this disease threatens over 219 million lives per year and causes 5-6% losses in GDP in endemic areas, even with current advances in prevention and treatment. This chapter discusses the currently tenuous position we are in globally, and the impact that could be seen if artemisinin treatment is lost, whether due to the unchecked spread of K13 mutations or poor global investment in treatment and prevention advances. Artemisinin is the backbone of current ACT treatment programs and severe malarial treatment; without it, the success of future malaria eradication programs will be in jeopardy.
Collapse
Affiliation(s)
- Emily Ricotta
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Quarters 15B-1, 8 West Dr, Bethesda, MD, 20892, USA.
- Kelly Government Solutions, Bethesda, USA.
| | - Jennifer Kwan
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Quarters 15B-1, 8 West Dr, Bethesda, MD, 20892, USA
| |
Collapse
|
10
|
Frimpong A, Kusi KA, Ofori MF, Ndifon W. Novel Strategies for Malaria Vaccine Design. Front Immunol 2018; 9:2769. [PMID: 30555463 PMCID: PMC6281765 DOI: 10.3389/fimmu.2018.02769] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
The quest for a licensed effective vaccine against malaria remains a global priority. Even though classical vaccine design strategies have been successful for some viral and bacterial pathogens, little success has been achieved for Plasmodium falciparum, which causes the deadliest form of malaria due to its diversity and ability to evade host immune responses. Nevertheless, recent advances in vaccinology through high throughput discovery of immune correlates of protection, lymphocyte repertoire sequencing and structural design of immunogens, provide a comprehensive approach to identifying and designing a highly efficacious vaccine for malaria. In this review, we discuss novel vaccine approaches that can be employed in malaria vaccine design.
Collapse
Affiliation(s)
- Augustina Frimpong
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,African Institute for Mathematical Sciences, Cape Coast, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michael Fokuo Ofori
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Wilfred Ndifon
- African Institute for Mathematical Sciences, Cape Coast, Ghana.,African Institute for Mathematical Sciences, University of Stellenbosch, Cape Town, South Africa
| |
Collapse
|
11
|
Ya-Umphan P, Cerqueira D, Cottrell G, Parker DM, Fowkes FJI, Nosten F, Corbel V. Anopheles Salivary Biomarker as a Proxy for Estimating Plasmodium falciparum Malaria Exposure on the Thailand-Myanmar Border. Am J Trop Med Hyg 2018; 99:350-356. [PMID: 29869601 DOI: 10.4269/ajtmh.18-0081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Timely identification and treatment of malaria transmission "hot spots" is essential to achieve malaria elimination. Here we investigate the relevance of using an Anopheles salivary biomarker to estimate Plasmodium falciparum malaria exposure risk along the Thailand-Myanmar border to guide malaria control. Between May 2013 and December 2014, > 9,000 blood samples collected in a cluster randomized control trial were screened with serological assays to measure the antibody responses to Anopheles salivary antigen (gSG6-P1) and P. falciparum malaria antigens (circumsporozoite protein, merozoite surface protein 119 [MSP-119]). Plasmodium falciparum infections were monitored through passive and active case detection. Seroprevalence to gSG6-P1, MSP-119, and CSP were 71.8% (95% Confidence interval [CI]: 70.9, 72.7), 68.6% (95% CI: 67.7, 69.5), and 8.6% (95% CI: 8.0, 9.2), respectively. Multivariate analysis showed that individuals with the highest Ab response to gSG6-P1 had six times the odds of being positive to CSP antigens (P < 0.001) and two times the odds of P. falciparum infection compared with low gSG6-P1 responders (P = 0.004). Spatial scan statistics revealed the presence of clusters of gSG6-P1 that partially overlapped P. falciparum infections. The gSG6-P1 salivary biomarker represents a good proxy for estimating P. falciparum malaria risk and could serve to implement hot spot-targeted vector control interventions to achieve malaria elimination.
Collapse
Affiliation(s)
- Phubeth Ya-Umphan
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (IRD 224-CNRS 5290 UM1-UM2), Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France
| | - Dominique Cerqueira
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Gilles Cottrell
- Institut de Recherche pour le Développement (IRD), Université Paris Descartes, Sorbonne Paris Cité, UMR 216, Paris, France
| | - Daniel M Parker
- Department of Population Health and Disease Prevention, University of California, Irvine, California.,Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Freya J I Fowkes
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.,Disease Elimination Program, Life Sciences, Burnet Institute, Melbourne, Australia
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, United Kingdom.,Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Vincent Corbel
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (IRD 224-CNRS 5290 UM1-UM2), Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France
| |
Collapse
|
12
|
Ouji M, Augereau JM, Paloque L, Benoit-Vical F. Plasmodium falciparum resistance to artemisinin-based combination therapies: A sword of Damocles in the path toward malaria elimination. Parasite 2018; 25:24. [PMID: 29676250 PMCID: PMC5909375 DOI: 10.1051/parasite/2018021] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/15/2018] [Indexed: 01/28/2023] Open
Abstract
The use of artemisinin-based combination therapies (ACTs), which combine an artemisinin derivative with a partner drug, in the treatment of uncomplicated malaria has largely been responsible for the significant reduction in malaria-related mortality in tropical and subtropical regions. ACTs have also played a significant role in the 18% decline in the incidence of malaria cases from 2010 to 2016. However, this progress is seriously threatened by the reduced clinical efficacy of artemisinins, which is characterised by delayed parasitic clearance and a high rate of recrudescence, as reported in 2008 in Western Cambodia. Resistance to artemisinins has already spread to several countries in Southeast Asia. Furthermore, resistance to partner drugs has been shown in some instances to be facilitated by pre-existing decreased susceptibility to the artemisinin component of the ACT. A major concern is not only the spread of these multidrug-resistant parasites to the rest of Asia but also their possible appearance in Sub-Saharan Africa, the continent most affected by malaria, as has been the case in the past with parasite resistance to other antimalarial treatments. It is therefore essential to understand the acquisition of resistance to artemisinins by Plasmodium falciparum to adapt malaria treatment policies and to propose new therapeutic solutions.
Collapse
Affiliation(s)
- Manel Ouji
- LCC (Laboratoire de Chimie de Coordination du CNRS),
BP 44099, 205 Route de Narbonne,
31077
Toulouse cedex 4 France
- Université de Toulouse; UPS, INPT; LCC;
F-31077
Toulouse France
| | - Jean-Michel Augereau
- LCC (Laboratoire de Chimie de Coordination du CNRS),
BP 44099, 205 Route de Narbonne,
31077
Toulouse cedex 4 France
- Université de Toulouse; UPS, INPT; LCC;
F-31077
Toulouse France
| | - Lucie Paloque
- LCC (Laboratoire de Chimie de Coordination du CNRS),
BP 44099, 205 Route de Narbonne,
31077
Toulouse cedex 4 France
- Université de Toulouse; UPS, INPT; LCC;
F-31077
Toulouse France
| | - Françoise Benoit-Vical
- LCC (Laboratoire de Chimie de Coordination du CNRS),
BP 44099, 205 Route de Narbonne,
31077
Toulouse cedex 4 France
- Université de Toulouse; UPS, INPT; LCC;
F-31077
Toulouse France
| |
Collapse
|
13
|
Oyebola KM, Aina OO, Bah MM, Ajibaye S, Correa S, Awandare GA, Amambua-Ngwa A. Assessing naturally acquired immune response and malaria treatment outcomes in Lagos, Nigeria. AAS Open Res 2018. [DOI: 10.12688/aasopenres.12828.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: There are emerging reports of poor efficacy of artemisinin-based combination treatment (ACT). However, mutations on the Kelch-13 gene marking delayed parasite clearance have no clinically defined relationship with ACT resistance across Africa. With increasing malaria control efforts, declining acquired immunity could be responsible for varying drug response profiles that may be dependent on levels of exposure to infections. To examine antibody responses against malaria and the influence on the efficacy of artemether-lumefantrine (AL), plasma samples were collected, prior to treatment, from individuals presenting with uncomplicated malaria. Methods: Participants were stratified into two groups: early (within 24 hours, N = 20) and late (between 48 – 72 hours, N = 30) parasite clearance after treatment, as determined by var gene acidic terminal sequence (varATS) polymerase chain reaction. Magnetic bead-based luminex assay was used to profile antibody responses specific to a panel of 21 Plasmodium falciparum sporozoite, merozoite and An. gambiae salivary antigens. Results: Median fluorescence intensity (MFI) of the antibodies was highest against glutamate-rich protein (GLURP-R0) and lowest against merozoite surface protein (MSP2) antigen. Analysis showed a positive correlation between expression of immunity and age of individuals (P = 0.023). However, there was no association between parasite density and antibody responses, except a significant positive relationship with reticulocyte binding protein-like homologue 5 (Rh5), P = 0.047; Plasmodium exported protein (Hyp2), P = 0.037 and merozoite surface protein 11 (H103), P = 0.038. Though higher levels of antibodies against erythrocyte binding antigens (EBA 140 and 175), MSP1.19, GLURP, circumsporozoite protein (CSP) and Rh4.2 were observed in individuals who recorded early parasite clearance, there was no significant difference in antibody responses in the early and late parasitological response groups. Conclusions: Characterization of additional markers in larger populations is required to reveal potential immunological correlates of drug efficacy.
Collapse
|