1
|
Bender ST, Ganz M, Mertens PR, Gross C. Bilateral non-contiguous necrotizing fasciitis of the lower extremities. Clin Case Rep 2023; 11:e6873. [PMID: 36698513 PMCID: PMC9851088 DOI: 10.1002/ccr3.6873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Necrotizing fasciitis (NF) is an uncommon soft tissue infection. Multifocal-extremity NF is a rarity with high mortality rates. Herein we report a case of bilateral non-contiguous NF of the lower extremities due to Escherichia coli with a fatal outcome, stressing the necessity of rapid and aggressive intervention in suspected cases.
Collapse
Affiliation(s)
- Sascha T. Bender
- Clinic for Nephrology and Hypertension, Diabetes and EndocrinologyOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | - Maximilian Ganz
- Clinic for Nephrology and Hypertension, Diabetes and EndocrinologyOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | - Peter R. Mertens
- Clinic for Nephrology and Hypertension, Diabetes and EndocrinologyOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | - Christian Gross
- Clinic for Nephrology and Hypertension, Diabetes and EndocrinologyOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| |
Collapse
|
2
|
Madsen MB, Bergsten H, Norrby-Teglund A. Treatment of Necrotizing Soft Tissue Infections: IVIG. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1294:105-125. [DOI: 10.1007/978-3-030-57616-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Emgård J, Bergsten H, McCormick JK, Barrantes I, Skrede S, Sandberg JK, Norrby-Teglund A. MAIT Cells Are Major Contributors to the Cytokine Response in Group A Streptococcal Toxic Shock Syndrome. Proc Natl Acad Sci U S A 2019; 116:25923-25931. [PMID: 31772015 PMCID: PMC6926028 DOI: 10.1073/pnas.1910883116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococcal toxic shock syndrome (STSS) is a rapidly progressing, life-threatening, systemic reaction to invasive infection caused by group A streptococci (GAS). GAS superantigens are key mediators of STSS through their potent activation of T cells leading to a cytokine storm and consequently vascular leakage, shock, and multiorgan failure. Mucosal-associated invariant T (MAIT) cells recognize MR1-presented antigens derived from microbial riboflavin biosynthesis and mount protective innate-like immune responses against the microbes producing such metabolites. GAS lack de novo riboflavin synthesis, and the role of MAIT cells in STSS has therefore so far been overlooked. Here we have conducted a comprehensive analysis of human MAIT cell responses to GAS, aiming to understand the contribution of MAIT cells to the pathogenesis of STSS. We show that MAIT cells are strongly activated and represent the major T cell source of IFNγ and TNF in the early stages of response to GAS. MAIT cell activation is biphasic with a rapid TCR Vβ2-specific, TNF-dominated response to superantigens and a later IL-12- and IL-18-dependent, IFNγ-dominated response to both bacterial cells and secreted factors. Depletion of MAIT cells from PBMC resulted in decreased total production of IFNγ, IL-1β, IL-2, and TNFβ. Peripheral blood MAIT cells in patients with STSS expressed elevated levels of the activation markers CD69, CD25, CD38, and HLA-DR during the acute compared with the convalescent phase. Our data demonstrate that MAIT cells are major contributors to the early cytokine response to GAS, and are therefore likely to contribute to the pathological cytokine storm underlying STSS.
Collapse
Affiliation(s)
- Johanna Emgård
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 141 52 Huddinge, Sweden
| | - Helena Bergsten
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 141 52 Huddinge, Sweden
| | - John K McCormick
- Department of Microbiology and Immunology, Western University, London, ON N6A 5C1, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Israel Barrantes
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 141 52 Huddinge, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 141 52 Huddinge, Sweden;
| |
Collapse
|
4
|
Thänert R, Itzek A, Hoßmann J, Hamisch D, Madsen MB, Hyldegaard O, Skrede S, Bruun T, Norrby-Teglund A, Medina E, Pieper DH. Molecular profiling of tissue biopsies reveals unique signatures associated with streptococcal necrotizing soft tissue infections. Nat Commun 2019; 10:3846. [PMID: 31451691 PMCID: PMC6710258 DOI: 10.1038/s41467-019-11722-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
Necrotizing soft tissue infections (NSTIs) are devastating infections caused by either a single pathogen, predominantly Streptococcus pyogenes, or by multiple bacterial species. A better understanding of the pathogenic mechanisms underlying these different NSTI types could facilitate faster diagnostic and more effective therapeutic strategies. Here, we integrate microbial community profiling with host and pathogen(s) transcriptional analysis in patient biopsies to dissect the pathophysiology of streptococcal and polymicrobial NSTIs. We observe that the pathogenicity of polymicrobial communities is mediated by synergistic interactions between community members, fueling a cycle of bacterial colonization and inflammatory tissue destruction. In S. pyogenes NSTIs, expression of specialized virulence factors underlies infection pathophysiology. Furthermore, we identify a strong interferon-related response specific to S. pyogenes NSTIs that could be exploited as a potential diagnostic biomarker. Our study provides insights into the pathophysiology of mono- and polymicrobial NSTIs and highlights the potential of host-derived signatures for microbial diagnosis of NSTIs.
Collapse
Affiliation(s)
- Robert Thänert
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Andreas Itzek
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Jörn Hoßmann
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Domenica Hamisch
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Martin Bruun Madsen
- Department of Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anaesthesia, Centre of Head and Orthopaedics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Trond Bruun
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | - Eva Medina
- Infection Immunity Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany.
| |
Collapse
|
5
|
Babbar A, Barrantes I, Pieper DH, Itzek A. Superantigen SpeA attenuates the biofilm forming capacity of Streptococcus pyogenes. J Microbiol 2019; 57:626-636. [DOI: 10.1007/s12275-019-8648-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/15/2019] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
|