1
|
Farzand R, Kimani MW, Mourkas E, Jama A, Clark JL, De Ste Croix M, Monteith WM, Lucidarme J, Oldfield NJ, Turner DPJ, Borrow R, Martinez-Pomares L, Sheppard SK, Bayliss CD. High-throughput phenotype-to-genotype testing of meningococcal carriage and disease isolates detects genetic determinants of disease-relevant phenotypic traits. mBio 2024; 15:e0305924. [PMID: 39475240 PMCID: PMC11633189 DOI: 10.1128/mbio.03059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 12/12/2024] Open
Abstract
Genome-wide association studies (GWAS) with binary or single phenotype data have successfully identified disease-associated genotypes and determinants of antimicrobial resistance. We describe a novel phenotype-to-genotype approach for a major bacterial pathogen that involves simultaneously testing for associations among multiple disease-related phenotypes and linkages between phenotypic variation and genetic determinants. High-throughput assays quantified variation among 163 Neisseria meningitidis serogroup W ST-11 clonal complex isolates for 11 phenotypic traits. A comparison of carriage and two disease subgroups detected significant differences between groups for eight phenotypic traits. Candidate genotypic testing indicated that indels in csw, a capsular biosynthesis gene, were associated with reduced survival in antibody-depleted heat-inactivated serum. GWAS testing detected 341 significant genetic variants (3 single-nucleotide polymorphisms and 338 unitigs) across all traits except serum bactericidal antibody-depleted assays. Growth traits were associated with variants of capsular biosynthesis genes, carbonic anhydrase, and an iron-uptake system while adhesion-linked variation was in pilC2, marR, and mutS. Multiple phase variation states or combinatorial phasotypes were associated with significant differences in multiple phenotypes. Controlling for group effects through regression and recursive random forest approaches detected group-independent effects for nalP with biofilm formation and fetA with a growth trait. Through random forest testing, nine phenotypes were weakly predictive of MenW:cc11 sub-lineage, original or 2013, for disease isolates while three characteristics separated carriage and disease isolates with >80% accuracy. This study demonstrates the power of combining high-throughput phenotypic testing of pathogenically relevant isolate collections with genomics for identifying genetic determinants of specific disease-relevant phenotypes and the pathobiology of microbial pathogens.IMPORTANCENext-generation sequencing technologies have led to the creation of extensive microbial genome sequence databases for several bacterial pathogens. Mining of these databases is now imperative for unlocking the maximum benefits of these resources. We describe a high-throughput methodology for detecting associations between phenotypic variation in multiple disease-relevant traits and a range of genetic determinants for Neisseria meningitidis, a major causative agent of meningitis and septicemia. Phenotypic variation in 11 disease-related traits was determined for 163 isolates of the hypervirulent ST-11 lineage and linked to specific single-nucleotide polymorphisms, short sequence variants, and phase variation states. Application of machine learning algorithms to our data outputs identified combinatorial phenotypic traits and genetic variants predictive of a disease association. This approach overcomes the limitations of generic meta-data, such as disease versus carriage, and provides an avenue to explore the multi-faceted nature of bacterial disease, carriage, and transmissibility traits.
Collapse
Affiliation(s)
- Robeena Farzand
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Mercy W. Kimani
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Evangelos Mourkas
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Abdullahi Jama
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Jack L. Clark
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - William M. Monteith
- Department of Biology, University of Oxford, Oxford, United Kingdom
- The Milner Centre of Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Jay Lucidarme
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, United Kingdom
| | - Neil J. Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David P. J. Turner
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, United Kingdom
| | | | | | - Christopher D. Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
2
|
Otsuka N, Koide K, Goto M, Kamachi K, Kenri T. Fim3-dependent autoagglutination of Bordetella pertussis. Sci Rep 2023; 13:7629. [PMID: 37165008 PMCID: PMC10172299 DOI: 10.1038/s41598-023-34672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Autoagglutination (Agg) of Bordetella pertussis is often observed in clinical laboratory. However, its causal factors and frequency in circulating strains are unknown. Repeated single colony isolation enabled us to detect an Agg- mutant in the supernatant of an Agg+ strain of B. pertussis. Whole-genome sequencing and immunoblot analysis disclosed that the Agg- mutant had a single C-deletion in its fim3 promoter region (Pfim3) which abolished Fim3 fimbriae production. A B. pertussis fim3-knock out mutant also lacked the Agg+ phenotype. Agg+ clinical isolates were detected a higher production of Fim3 than Fim3-producing Agg- isolates. B. pertussis is known to harbor multiple Pfim3 poly(C) lengths within a single strain culture and our newly developed PCR/LDR assay revealed that Agg+ isolates harbor the highest Pfim3 poly-14C abundance. We evaluated the frequency of autoagglutination in clinical B. pertussis isolates collected in Japan between 1994 and 2018 (n = 203). Fim3 production was confirmed for 190 isolates and 74.7% of them displayed the Agg+ phenotype. The Agg+ phenotype was strongly associated with Pfim3 poly-14C abundance. Taken together, our findings demonstrated that B. pertussis autoagglutination occurs in response to high Fim3 levels and the Agg+ strain has predominated in Japan over the past two decades.
Collapse
Affiliation(s)
- Nao Otsuka
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan.
| | - Kentaro Koide
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Masataka Goto
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Kazunari Kamachi
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| |
Collapse
|
3
|
Dave N, Albiheyri RS, Wanford JJ, Green LR, Oldfield NJ, Turner DPJ, Martinez-Pomares L, Bayliss CD. Variable disruption of epithelial monolayers by Neisseria meningitidis carriage isolates of the hypervirulent MenW cc11 and MenY cc23 lineages. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36821361 DOI: 10.1099/mic.0.001305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Colonization of mucosal tissues by Neisseria meningitidis requires adhesion mediated by the type IV pilus and multiple outer-membrane proteins. Penetration of the mucosa and invasion of epithelial cells are thought to contribute to host persistence and invasive disease. Using Calu-3 cell monolayers grown at an air-liquid interface, we examined adhesion, invasion and monolayer disruption by carriage isolates of two clonal complexes of N. meningitidis. Carriage isolates of both the serogroup Y cc23 and the hypervirulent serogroup W cc11 lineages exhibited high levels of cellular adhesion, and a variable disruption phenotype across independent isolates. Inactivation of the gene encoding the main pilus sub-unit in multiple cc11 isolates abrogated both adhesive capacity and ability to disrupt epithelial monolayers. Contrastingly, inactivation of the phase-variable opa or nadA genes reduced adhesion and invasion, but not disruption of monolayer integrity. Adherence of tissue-disruptive meningococci correlated with loss of staining for the tight junction protein, occludin. Intriguingly, in a pilus-negative strain background, we observed compensatory ON switching of opa genes, which facilitated continued adhesion. We conclude that disruption of epithelial monolayers occurs in multiple meningococcal lineages but can vary during carriage and is intimately linked to pilus-mediated adhesion.
Collapse
Affiliation(s)
- Neelam Dave
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Raed S Albiheyri
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Present address: Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Joseph J Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.,Present address: Department of Infectious Disease, King's College, London, UK
| | - Luke R Green
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.,Present address: Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Neil J Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - David P J Turner
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
4
|
Gao Q, Lu S, Wang Y, He L, Wang M, Jia R, Chen S, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Sun D, Tian B, Cheng A. Bacterial DNA methyltransferase: A key to the epigenetic world with lessons learned from proteobacteria. Front Microbiol 2023; 14:1129437. [PMID: 37032876 PMCID: PMC10073500 DOI: 10.3389/fmicb.2023.1129437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Epigenetics modulates expression levels of various important genes in both prokaryotes and eukaryotes. These epigenetic traits are heritable without any change in genetic DNA sequences. DNA methylation is a universal mechanism of epigenetic regulation in all kingdoms of life. In bacteria, DNA methylation is the main form of epigenetic regulation and plays important roles in affecting clinically relevant phenotypes, such as virulence, host colonization, sporulation, biofilm formation et al. In this review, we survey bacterial epigenomic studies and focus on the recent developments in the structure, function, and mechanism of several highly conserved bacterial DNA methylases. These methyltransferases are relatively common in bacteria and participate in the regulation of gene expression and chromosomal DNA replication and repair control. Recent advances in sequencing techniques capable of detecting methylation signals have enabled the characterization of genome-wide epigenetic regulation. With their involvement in critical cellular processes, these highly conserved DNA methyltransferases may emerge as promising targets for developing novel epigenetic inhibitors for biomedical applications.
Collapse
Affiliation(s)
- Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Shuwei Lu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuwei Wang
- Key Laboratory of Livestock and Poultry Provenance Disease Research in Mianyang, Sichuan, China
| | - Longgui He
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Lemos APSD, Gorla MCO, de Moraes C, Willemann MC, Sacchi CT, Fukasawa LO, Camargo CH, Barreto G, Rodrigues DS, Gonçalves MG, Higa FT, Salgado MM, de Moraes JC. Emergence of Neisseria meningitidis W South American sublineage strain variant in Brazil: disease and carriage. J Med Microbiol 2022; 71. [PMID: 35144719 DOI: 10.1099/jmm.0.001484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction. Invasive meningococcal disease is a major health problem, impacting morbidity and mortality worldwide. Exploratory genomics has revealed insights into adaptation, transmissibility and virulence to elucidate endemic, outbreaks or epidemics caused by Neisseria meningitidis serogroup W (MenW) strains.Gap Statement. Limited information on the genomics of Neisseria meningitis serogroup W ST11/cc11 is available from emerging countries, especially in contemporary isolates.Aim. To (i) describe the antigenic diversity and distribution of genetic lineages of N. meningitidis serogroup W circulating in Brazil; (ii) study the carriage prevalence of hypervirulent clones in adolescents students and (iii) analyse the potential risk factors for meningococcal carriage.Methodology. Using whole-genome sequencing, we analysed the genomic diversity of 92 invasive N. meningitidis serogroup W isolates circulating in Brazil from 2016 to 2019. A cross-sectional survey of meningococcal carriage was conducted in 2019, in the city of Florianópolis, Brazil, among a representative sample of 538 students.Results. A predominance (58.5 %, 41/82) of ST11/cc11 presenting PorB2-144, PorA VR1-5, VR2-2, FetA 1-1, and a novel fHbp peptide 1241 was found on invasive N. meningitidis W isolates, on the other hand, a high diversity of clonal complexes was found among carriage isolates. The overall carriage rate was 7.5 % (40/538). A total of 28 of 538 swab samples collected were culture positive for N. meningitidis, including four serogroup/genogroup B isolates (14.8 %;4/27), 1 serogroup/genogroup Y isolate (3.7 %;1/27), 22 (81.5 %; 22/27) non-groupable isolates. No MenW isolate was identified among carriages isolates.Conclusion. This report describes the emergence of the new MenW ST11/cc11 South America sublineage variant, named here, 2016 strain, carrying a novel fHbp peptide 1241, but its emergence, was not associated with an increased MenW carriage prevalence. Continuous surveillance is necessary to ascertain the role of this sublineage diversification and how its emergence can impact transmission.
Collapse
Affiliation(s)
| | | | - Camile de Moraes
- Coordenação Geral de Emergências em Saúde Pública, Brasília, Distrito Federal, Brazil
| | | | | | | | | | - Gisele Barreto
- Vigilância Epidemiológica de Santa Catarina, Santa Catarina, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Barnier JP, Euphrasie D, Join-Lambert O, Audry M, Schonherr-Hellec S, Schmitt T, Bourdoulous S, Coureuil M, Nassif X, El Behi M. Type IV pilus retraction enables sustained bacteremia and plays a key role in the outcome of meningococcal sepsis in a humanized mouse model. PLoS Pathog 2021; 17:e1009299. [PMID: 33592056 PMCID: PMC7909687 DOI: 10.1371/journal.ppat.1009299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/26/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Neisseria meningitidis (the meningococcus) remains a major cause of bacterial meningitis and fatal sepsis. This commensal bacterium of the human nasopharynx can cause invasive diseases when it leaves its niche and reaches the bloodstream. Blood-borne meningococci have the ability to adhere to human endothelial cells and rapidly colonize microvessels. This crucial step enables dissemination into tissues and promotes deregulated inflammation and coagulation, leading to extensive necrotic purpura in the most severe cases. Adhesion to blood vessels relies on type IV pili (TFP). These long filamentous structures are highly dynamic as they can rapidly elongate and retract by the antagonistic action of two ATPases, PilF and PilT. However, the consequences of TFP dynamics on the pathophysiology and the outcome of meningococcal sepsis in vivo have been poorly studied. Here, we show that human graft microvessels are replicative niches for meningococci, that seed the bloodstream and promote sustained bacteremia and lethality in a humanized mouse model. Intriguingly, although pilus-retraction deficient N. meningitidis strain (ΔpilT) efficiently colonizes human graft tissue, this mutant did not promote sustained bacteremia nor induce mouse lethality. This effect was not due to a decreased inflammatory response, nor defects in bacterial clearance by the innate immune system. Rather, TFP-retraction was necessary to promote the release of TFP-dependent contacts between bacteria and, in turn, the detachment from colonized microvessels. The resulting sustained bacteremia was directly correlated with lethality. Altogether, these results demonstrate that pilus retraction plays a key role in the occurrence and outcome of meningococcal sepsis by supporting sustained bacteremia. These findings open new perspectives on the role of circulating bacteria in the pathological alterations leading to lethal sepsis.
Collapse
Affiliation(s)
- Jean-Philippe Barnier
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Service de microbiologie, Assistance Publique–Hôpitaux de Paris. Centre–Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Daniel Euphrasie
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Olivier Join-Lambert
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Service de microbiologie, Assistance Publique–Hôpitaux de Paris. Centre–Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Mathilde Audry
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Sophia Schonherr-Hellec
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Taliah Schmitt
- Service de chirurgie reconstructrice et plastique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Sandrine Bourdoulous
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
| | - Mathieu Coureuil
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Xavier Nassif
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Service de microbiologie, Assistance Publique–Hôpitaux de Paris. Centre–Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Mohamed El Behi
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| |
Collapse
|
7
|
Holmes JC, Green LR, Oldfield NJ, Turner DP, Bayliss CD. Rapid Transmission of a Hyper-Virulent Meningococcal Clone Due to High Effective Contact Numbers and Super Spreaders. Front Genet 2020; 11:579411. [PMID: 33365047 PMCID: PMC7750637 DOI: 10.3389/fgene.2020.579411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
Rapid transmission, a critical contributory factor in outbreaks of invasive meningococcal disease, requires naïve populations of sufficient size and intermingling. We examined genomic variability and transmission dynamics in a student population subject to an 11-fold increase in carriage of a hypervirulent Neisseria meningitidis serogroup W ST-11 clone. Phylogenetic clusters, mutation and recombination rates were derived by bioinformatic analyses of whole-genome sequencing data. Transmission dynamics were determined by combining observed carriage rates, cluster sizes and distributions with simple SIS models. Between 9 and 15 genetically-distinct clusters were detected and associated with seven residential halls. Clusters had low mutation accumulation rates and infrequent recombination events. Modeling indicated that effective contacts decreased from 10 to 2 per day between the start and mid-point of the university term. Transmission rates fluctuated between 1 and 4% while the R(t) for carriage decreased from an initial rate of 47 to 1. Decreases in transmission values correlated with a rise in vaccine-induced immunity. Observed carriage dynamics could be mimicked by populations containing 20% of super spreaders with 2.3-fold higher effective contact rates. We conclude that spread of this hypervirulent ST-11 meningococcal clone depends on the levels of effective contacts and immunity rather than genomic variability. Additionally, we propose that super-spreaders enhance meningococcal transmission and that a 70% MenACWY immunization level is sufficient to retard, but not fully prevent, meningococcal spread in close-contact populations.
Collapse
Affiliation(s)
- Jonathan C. Holmes
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Luke R. Green
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Neil J. Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David P.J. Turner
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Christopher D. Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
8
|
De Ste Croix M, Holmes J, Wanford JJ, Moxon ER, Oggioni MR, Bayliss CD. Selective and non-selective bottlenecks as drivers of the evolution of hypermutable bacterial loci. Mol Microbiol 2020; 113:672-681. [PMID: 32185830 PMCID: PMC7154626 DOI: 10.1111/mmi.14453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/28/2022]
Abstract
Bottlenecks reduce the size of the gene pool within populations of all life forms with implications for their subsequent survival. Here, we examine the effects of bottlenecks on bacterial commensal-pathogens during transmission between, and dissemination within, hosts. By reducing genetic diversity, bottlenecks may alter individual or population-wide adaptive potential. A diverse range of hypermutable mechanisms have evolved in infectious agents that allow for rapid generation of genetic diversity in specific genomic loci as opposed to the variability arising from increased genome-wide mutation rates. These localised hypermutable mechanisms include multi-gene phase variation (PV) of outer membrane components, multi-allele PV of restriction systems and recombination-driven antigenic variation. We review selected experimental and theoretical (mathematical) models pertaining to the hypothesis that localised hypermutation (LH) compensates for fitness losses caused by bottlenecks and discuss whether bottlenecks have driven the evolution of hypermutable loci.
Collapse
Affiliation(s)
- Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Jonathan Holmes
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Joseph J Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - E Richard Moxon
- Department of Paediatrics, University of Oxford Medical Sciences Division, John Radcliffe Hospital, Oxford, UK
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | |
Collapse
|
9
|
Caugant DA, Brynildsrud OB. Neisseria meningitidis: using genomics to understand diversity, evolution and pathogenesis. Nat Rev Microbiol 2019; 18:84-96. [PMID: 31705134 DOI: 10.1038/s41579-019-0282-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 01/30/2023]
Abstract
Meningococcal disease remains an important cause of morbidity and death worldwide despite the development and increasing implementation of effective vaccines. Elimination of the disease is hampered by the enormous diversity and antigenic variability of the causative agent, Neisseria meningitidis, one of the most variable bacteria in nature. These features are attained mainly through high rates of horizontal gene transfer and alteration of protein expression through phase variation. The recent availability of whole-genome sequencing (WGS) of large-scale collections of N. meningitidis isolates from various origins, databases to facilitate storage and sharing of WGS data and the concomitant development of effective bioinformatics tools have led to a much more thorough understanding of the diversity of the species, its evolution and population structure and how virulent traits may emerge. Implementation of WGS is already contributing to enhanced epidemiological surveillance and is essential to ascertain the impact of vaccination strategies. This Review summarizes the recent advances provided by WGS studies in our understanding of the biology of N. meningitidis and the epidemiology of meningococcal disease.
Collapse
Affiliation(s)
- Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway. .,Department of Community Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ola B Brynildsrud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Food Safety and Infection Biology, Faculty of Veterinary Science, Norwegian University of Life Science, Oslo, Norway
| |
Collapse
|