1
|
Gutierrez-Barbosa H, Medina-Moreno S, Perdomo-Celis F, Davis H, Coronel-Ruiz C, Zapata JC, Chua JV. A Comparison of Lymphoid and Myeloid Cells Derived from Human Hematopoietic Stem Cells Xenografted into NOD-Derived Mouse Strains. Microorganisms 2023; 11:1548. [PMID: 37375051 DOI: 10.3390/microorganisms11061548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Humanized mice are an invaluable tool for investigating human diseases such as cancer, infectious diseases, and graft-versus-host disease (GvHD). However, it is crucial to understand the strengths and limitations of humanized mice and select the most appropriate model. In this study, we describe the development of the human lymphoid and myeloid lineages using a flow cytometric analysis in four humanized mouse models derived from NOD mice xenotransplanted with CD34+ fetal cord blood from a single donor. Our results showed that all murine strains sustained human immune cells within a proinflammatory environment induced by GvHD. However, the Hu-SGM3 model consistently generated higher numbers of human T cells, monocytes, dendritic cells, mast cells, and megakaryocytes, and a low number of circulating platelets showing an activated profile when compared with the other murine strains. The hu-NOG-EXL model had a similar cell development profile but a higher number of circulating platelets with an inactivated state, and the hu-NSG and hu-NCG developed low frequencies of immune cells compared with the other models. Interestingly, only the hu-SGM3 and hu-EXL models developed mast cells. In conclusion, our findings highlight the importance of selecting the appropriate humanized mouse model for specific research questions, considering the strengths and limitations of each model and the immune cell populations of interest.
Collapse
Affiliation(s)
| | - Sandra Medina-Moreno
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Federico Perdomo-Celis
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Harry Davis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Carolina Coronel-Ruiz
- Vice-Chancellor of Research, Virology Group, Universidad El Bosque, Bogotá 110121, Colombia
| | - Juan C Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joel V Chua
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Miyamura N, Suzuki K, Friedman RA, Floratos A, Kunisada Y, Masuda K, Lowy AM, Tsuji M, Sugahara KN. A pancreatic cancer mouse model with human immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542127. [PMID: 37292766 PMCID: PMC10245824 DOI: 10.1101/2023.05.24.542127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a tumor immune microenvironment (TIME) that promotes resistance to immunotherapy. A preclinical model system that facilitates studies of the TIME and its impact on the responsiveness of human PDAC to immunotherapies remains an unmet need. We report a novel mouse model, which develops metastatic human PDAC that becomes infiltrated by human immune cells recapitulating the TIME of human PDAC. The model may serve as a versatile platform to study the nature of human PDAC TIME and its response to various treatments.
Collapse
|
3
|
Phares TW, Huang J, Kotraiah V, Hauser MJ, Domi A, Oruganti S, Browne CD, Buontempo P, Mansour M, Pannucci J, Tsuji M, Gutierrez GM. Viral delivery of a peptide-based immunomodulator enhances T cell priming during vaccination. Front Pharmacol 2022; 13:1029636. [PMID: 36582528 PMCID: PMC9792674 DOI: 10.3389/fphar.2022.1029636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Modern, subunit-based vaccines have so far failed to induce significant T cell responses, contributing to ineffective vaccination against many pathogens. Importantly, while today's adjuvants are designed to trigger innate and non-specific immune responses, they fail to directly stimulate the adaptive immune compartment. Programmed cell death 1 (PD-1) partly regulates naïve-to-antigen-specific effector T cell transition and differentiation by suppressing the magnitude of activation. Indeed, we previously reported on a microbial-derived, peptide-based PD-1 checkpoint inhibitor, LD01, which showed potent T cell-stimulating activity when combined with a vaccine. Here we sought to improve the potency of LD01 by designing and testing new LD01 derivatives. Accordingly, we found that a modified version of an 18-amino acid metabolite of LD01, LD10da, improved T cell activation capability in a malaria vaccine model. Specifically, LD10da demonstrates improved antigen-specific CD8+ T cell expansion when combined prophylactically with an adenovirus-based malaria vaccine. A single dose of LD10da at the time of vaccination is sufficient to increase antigen-specific CD8+ T cell expansion in wild-type mice. Further, we show that LD10 can be encoded and delivered by a Modified Vaccinia Ankara viral vector and can enhance antigen-specific CD8+ T cell expansion comparable to that of synthetic peptide administration. Therefore, LD10da represents a promising biologic-based immunomodulator that can be genetically encoded and delivered, along with the antigen, by viral or other nucleic acid vectors to improve the efficacy and delivery of vaccines for ineradicable and emerging infectious diseases.
Collapse
Affiliation(s)
| | - Jing Huang
- The Aaron Diamond AIDS Research Center, New York, NY, United States,Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | | | | | | | | | | | | | - Marc Mansour
- MM Scientific Consultants Inc., Halifax, NS, Canada
| | | | - Moriya Tsuji
- The Aaron Diamond AIDS Research Center, New York, NY, United States,Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Gabriel M. Gutierrez
- Hibiscus Biotechnology, LLC, Rockville, MD, United States,*Correspondence: Gabriel M. Gutierrez,
| |
Collapse
|
4
|
He X, Zhou S, Quinn B, Jahagirdar D, Ortega J, Long MD, Abrams SI, Lovell JF. An In Vivo Screen to Identify Short Peptide Mimotopes with Enhanced Antitumor Immunogenicity. Cancer Immunol Res 2022; 10:314-326. [PMID: 34992135 DOI: 10.1158/2326-6066.cir-21-0332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/23/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
Tumor-associated self-antigens are potential cancer vaccine targets but suffer from limited immunogenicity. There are examples of mutated, short self-peptides inducing epitope-specific CD8⁺ T cells more efficiently than the wild-type epitope, but current approaches cannot yet reliably identify such epitopes, which are referred to as enhanced mimotopes ("e-mimotopes"). Here, we present a generalized strategy to develop e-mimotopes, using the tyrosinase-related protein 2 (Trp2) peptide Trp2180-188, which is a murine major histocompatibility complex class I (MHC-I) epitope, as a test case. Using a vaccine adjuvant that induces peptide particle formation and strong cellular responses with nanogram antigen doses, a two-step method systematically identified e-mimotope candidates with murine immunization. First, position-scanning peptide micro libraries were generated in which each position of the wild-type epitope sequence was randomized. Randomization of only one specific residue of the Trp2 epitope increased antitumor immunogenicity. Second, all 20 amino acids were individually substituted and tested at that position, enabling the identification of two e-mimotopes with single amino-acid mutations. Despite similar MHC-I affinity compared to the wild-type epitope, e-mimotope immunization elicited improved Trp2-specific cytotoxic T-cell phenotypes and improved T-cell receptor affinity for both the e-mimotopes and the native epitope, resulting in better outcomes in multiple prophylactic and therapeutic tumor models. The screening method was also applied to other targets with other murine MHC-I restriction elements, including epitopes within glycoprotein 70 and Wilms' Tumor Gene 1, to identify additional e-mimotopes with enhanced potency.
Collapse
Affiliation(s)
- Xuedan He
- Biomedical Engineering, University at Buffalo, State University of New York
| | - Shiqi Zhou
- Biomedical Engineering, University at Buffalo, State University of New York
| | - Breandan Quinn
- Biomedical Engineering, University at Buffalo, State University of New York
| | | | | | - Mark D Long
- Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center
| | | | - Jonathan F Lovell
- Biomedical Engineering, University at Buffalo, State University of New York
| |
Collapse
|
5
|
A chimeric HLA-A2:β2M:Ig fusion protein for the study of virus-specific CD8 + T-cells. J Immunol Methods 2021; 492:112997. [PMID: 33600818 DOI: 10.1016/j.jim.2021.112997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The response mediated by CD8+ T-cells in the context of infection and vaccination has been thoroughly investigated and represents one of the most important branches that allow for the development of immunity against intracellular pathogens and, thus, the establishment of robust antiviral responses. However, there is a lack of methods to assess antigen-specific CD8+ T-cells. OBJECTIVE Search for the ideal assays to assess the function of antigen-specific CD8+ T-cells. METHODS In the present study a chimeric HLA-A2:β2M:Ig fusion protein was produced, purified, and evaluated in functional CD8+ T-cell response studies using samples from Influenza A patients and humanized mice upon adenoviral vaccination. RESULTS The HLA-A2:β2M:Ig molecule, bound to immunodominant viral peptides by passive transfer, was able to induce robust antiviral CD8+ T-cell responses mediated by IFN-γ. The in vitro IFN-γ release assay using the chimeric HLA-A2:β2M:Ig fusion protein detected bona fide human CD8+ T-cells, demonstrating superior production of IFN-γ by human CD8+ T-cells induced by Influenza A immunodominant GILGFVFTL peptide. Removal of antigen-presenting cells and CD8+ T-cell enrichment improved significantly the IFN-γ production. The chimeric HLA-A2:β2M:Ig fusion protein also triggered HLA-A2-restricted CD8+ T-cell response in a humanized mouse model upon vaccination with adenovirus encoding HLA-A2-restricted HIV p24 antigen. The results strongly suggest the use of tailor-made assays for detecting HLA-A2-restricted CD8+ T-cell Responses in the Humanized Mouse Model. CONCLUSION The chimeric HLA-A2:β2M:Ig fusion protein-based assays provided a sensitive tool that may be paramount to measure virus-specific CD8+ T-cell response in a range of viral infections of clinical relevance.
Collapse
|
6
|
Abstract
Dendritic cells are a specialized subset of hematopoietic cells essential for mounting immunity against tumors and infectious disease as well as inducing tolerance for maintenance of homeostasis. DCs are equipped with number of immunoregulatory or stimulatory molecules that interact with other leukocytes to modulate their functions. Recent advances in DC biology identified a specific role for the conventional dendritic cell type 1 (cDC1) in eliciting cytotoxic CD8+ T cells essential for clearance of tumors and infected cells. The critical role of this subset in eliciting immune responses or inducing tolerance has largely been defined in mice whereas the biology of human cDC1 is poorly characterized owing to their extremely low frequency in tissues. A detailed characterization of the functions of many immunoregulatory and stimulatory molecules expressed by human cDC1 is critical for understanding their biology to exploit this subset for designing novel therapeutic modalities against cancer, infectious disease and autoimmune disorders.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Kristen J Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Extramural member Parker Institute of Cancer Immunotherapy, CA, United States.
| |
Collapse
|
7
|
Huang J, Zhou J, Ghinnagow R, Seki T, Iketani S, Soulard D, Paczkowski P, Tsuji Y, MacKay S, Cruz LJ, Trottein F, Tsuji M. Targeted Co-delivery of Tumor Antigen and α-Galactosylceramide to CD141 + Dendritic Cells Induces a Potent Tumor Antigen-Specific Human CD8 + T Cell Response in Human Immune System Mice. Front Immunol 2020; 11:2043. [PMID: 32973811 PMCID: PMC7461784 DOI: 10.3389/fimmu.2020.02043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/27/2020] [Indexed: 02/01/2023] Open
Abstract
Active co-delivery of tumor antigens (Ag) and α-galactosylceramide (α-GalCer), a potent agonist for invariant Natural Killer T (iNKT) cells, to cross-priming CD8α+ dendritic cells (DCs) was previously shown to promote strong anti-tumor responses in mice. Here, we designed a nanoparticle-based vaccine able to target human CD141+ (BDCA3+) DCs - the equivalent of murine CD8α+ DCs – and deliver both tumor Ag (Melan A) and α-GalCer. This nanovaccine was inoculated into humanized mice that mimic the human immune system (HIS) and possess functional iNKT cells and CD8+ T cells, called HIS-CD8/NKT mice. We found that multiple immunizations of HIS-CD8/NKT mice with the nanovaccine resulted in the activation and/or expansion of human CD141+ DCs and iNKT cells and ultimately elicited a potent Melan-A-specific CD8+ T cell response, as determined by tetramer staining and ELISpot assay. Single-cell proteomics further detailed the highly polyfunctional CD8+ T cells induced by the nanovaccine and revealed their predictive potential for vaccine potency. This finding demonstrates for the first time the unique ability of human iNKT cells to license cross-priming DCs in vivo and adds a new dimension to the current strategy of cancer vaccine development.
Collapse
Affiliation(s)
- Jing Huang
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, United States.,Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Jing Zhou
- IsoPlexis, Branford, CT, United States
| | - Reem Ghinnagow
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Toshiyuki Seki
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, United States.,Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, United States.,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Daphnée Soulard
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | | | - Yukiko Tsuji
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, United States
| | | | - Luis Javier Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, United States.,Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
8
|
A recently described type 2 conventional dendritic cell (cDC2) subset mediates inflammation. Cell Mol Immunol 2020; 17:1215-1217. [PMID: 32732988 DOI: 10.1038/s41423-020-0511-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
|