1
|
Zhuang L, Gong J, Zhang D, Zhang P, Zhao Y, Yang J, Sun L, Zhang Y, Shen Q. Metal and metal oxide nanoparticle-assisted molecular assays for the detection of Salmonella. DISCOVER NANO 2025; 20:65. [PMID: 40172753 PMCID: PMC11965082 DOI: 10.1186/s11671-025-04237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
This paper provides a comprehensive overview of the diverse applications and innovations of nanoparticles in the detection of Salmonella. It encompasses a comprehensive range of novel methods, including efficient enrichment, nucleic acid extraction, immunoassays, nucleic acid tests, biosensors, and emerging strategies with the potential for future applications. The surface modification of specific antibodies or ligands enables nanoparticles to achieve highly selective capture of Salmonella, while optimizing the nucleic acid extraction process and improving detection efficiency. The employment of nanoparticles in immunological and nucleic acid tests markedly enhances the specificity and sensitivity of the reaction, thereby optimizing the determination of detection results. Moreover, the distinctive physicochemical properties of nanoparticles enhance the sensitivity, selectivity, and stability of biosensors, thereby facilitating the rapid advancement of bio-detection technologies. It is particularly noteworthy that there has been significant advancement in the application and innovative research of nanozymes in molecular assays. This progress has not only resulted in enhanced detection efficiency but has also facilitated innovation and improvement in detection technologies. As nanotechnologies continue to advance, the use of metal and metal oxide nanoparticles in Salmonella detection is likely to become a more promising and reliable strategy for ensuring food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Li Sun
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
2
|
Shalaby MG, Al-Hossainy AF, Abo-Zeid AM, Mobark H, Mahmoud YA. Synthesis, characterization, physicochemical properties, and in-vitro anti-bacterial evaluation for doped Fe-Fusarium oxysporum bio-nanocomposite. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|