1
|
Furukawa R, Kuwatani M, Jiang JJ, Tanaka Y, Hasebe R, Murakami K, Tanaka K, Hirata N, Ohki I, Takahashi I, Yamasaki T, Shinohara Y, Nozawa S, Hojyo S, Kubota SI, Hashimoto S, Hirano S, Sakamoto N, Murakami M. GGT1 is a SNP eQTL gene involved in STAT3 activation and associated with the development of Post-ERCP pancreatitis. Sci Rep 2024; 14:12224. [PMID: 38806529 PMCID: PMC11133343 DOI: 10.1038/s41598-024-60312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
Post-ERCP pancreatitis (PEP) is an acute pancreatitis caused by endoscopic-retrograde-cholangiopancreatography (ERCP). About 10% of patients develop PEP after ERCP. Here we show that gamma-glutamyltransferase 1 (GGT1)-SNP rs5751901 is an eQTL in pancreatic cells associated with PEP and a positive regulator of the IL-6 amplifier. More PEP patients had the GGT1 SNP rs5751901 risk allele (C) than that of non-PEP patients at Hokkaido University Hospital. Additionally, GGT1 expression and IL-6 amplifier activation were increased in PEP pancreas samples with the risk allele. A mechanistic analysis showed that IL-6-mediated STAT3 nuclear translocation and STAT3 phosphorylation were suppressed in GGT1-deficient cells. Furthermore, GGT1 directly associated with gp130, the signal-transducer of IL-6. Importantly, GGT1-deficiency suppressed inflammation development in a STAT3/NF-κB-dependent disease model. Thus, the risk allele of GGT1-SNP rs5751901 is involved in the pathogenesis of PEP via IL-6 amplifier activation. Therefore, the GGT1-STAT3 axis in pancreas may be a prognosis marker and therapeutic target for PEP.
Collapse
Affiliation(s)
- Ryutaro Furukawa
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, China
| | - Yuki Tanaka
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Rie Hasebe
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Kumiko Tanaka
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Noriyuki Hirata
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Izuru Ohki
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Ikuko Takahashi
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Takeshi Yamasaki
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Yuta Shinohara
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Shunichiro Nozawa
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Hojyo
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan.
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Stone HK, Huang B, Chen C, Ma Q, Bennett MR, Devarajan P. External Validation of a Urinary Biomarker Risk Score for the Prediction of Steroid Responsiveness in Adults With Nephrotic Syndrome. Kidney Int Rep 2023; 8:2458-2468. [PMID: 38025209 PMCID: PMC10658279 DOI: 10.1016/j.ekir.2023.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction In idiopathic nephrotic syndrome, response to corticosteroids remains the best indicator of prognosis. Noninvasive markers to predict a patient's response to steroids would allow improved prognostication and a more personalized approach to management. We have previously derived a urinary biomarker risk score which can differentiate steroid sensitive nephrotic syndrome (SSNS) from steroid resistant nephrotic syndrome (SRNS) in children. The goal of this study was to validate this previously derived biomarker risk score in a cohort of steroid-naïve adult patients, to determine whether the panel could be used to predict steroid responsiveness at the time of initial diagnosis. Methods In this external validation study, clinical data, and urinary specimens (obtained before initiation of steroid treatment) from adult patients were used in the Nephrotic Syndrome Study Network (NEPTUNE) cohort. A panel of 5 previously identified and validated urinary biomarkers, including neutrophil gelatinase-associated lipocalin (NGAL), vitamin D binding protein (VDBP), Fetuin-A (FetA), Transthyretin (TTR), and alpha-1 acid glycoprotein 2 (AGP2) was measured. A summary risk score for steroid resistance was calculated based on biomarker concentrations. Receiver operating characteristic curves were created for each log-transformed biomarker concentration and for the individual and combined biomarker risk score. Results The urine biomarker risk score predicted development of steroid resistance, with optimal sensitivity and specificity of 0.74, and area under the receiver operating characteristic curve (AUC) of 0.79 using both absolute and creatinine-corrected concentrations. Conclusion This study validates the previously derived urinary biomarker risk score to predict steroid resistance in adult patients with nephrotic syndrome at initial diagnosis.
Collapse
Affiliation(s)
- Hillarey K. Stone
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Bin Huang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Chen Chen
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Michael R. Bennett
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Lee SH, Cho S, Lee JY, Hong JY, Kim S, Jeong MH, Kim WH. Identification of Potential Drug Targets for Antiplatelet Therapy Specifically Targeting Platelets of Old Individuals through Proteomic Analysis. Biomedicines 2023; 11:2944. [PMID: 38001945 PMCID: PMC10669211 DOI: 10.3390/biomedicines11112944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Aging is a growing problem worldwide, and the prevalence and mortality of arterial and venous thromboembolism (VTE) are higher in the elderly than in the young population. To address this issue, various anticoagulants have been used. However, no evidence can confirm that antithrombotic agents are suitable for the elderly. Therefore, this study aims to investigate the platelet proteome of aged mice and identify antithrombotic drug targets specific to the elderly. Based on the proteome analysis of platelets from aged mice, 308 increased or decreased proteins were identified. Among these proteins, three targets were selected as potential antithrombotic drug targets. These targets are membrane proteins or related to platelet function and include beta-2-glycoprotein 1 (β2GP1, ApolipoproteinH (ApoH)), alpha-1-acid glycoprotein2 (AGP2, Orosomucoid-2 (Orm2)), and Ras-related protein (Rab11a).
Collapse
Affiliation(s)
- Seung Hee Lee
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Republic of Korea; (S.C.)
| | | | | | | | | | | | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Republic of Korea; (S.C.)
| |
Collapse
|
4
|
Yamamoto R, Yamada S, Atsumi T, Murakami K, Hashimoto A, Naito S, Tanaka Y, Ohki I, Shinohara Y, Iwasaki N, Yoshimura A, Jiang JJ, Kamimura D, Hojyo S, Kubota SI, Hashimoto S, Murakami M. Computer model of IL-6-dependent rheumatoid arthritis in F759 mice. Int Immunol 2023; 35:403-421. [PMID: 37227084 DOI: 10.1093/intimm/dxad016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
The interleukin-6 (IL-6) amplifier, which describes the simultaneous activation of signal transducer and activator of transcription 3 (STAT3) and NF-κb nuclear factor kappa B (NF-κB), in synovial fibroblasts causes the infiltration of immune cells into the joints of F759 mice. The result is a disease that resembles human rheumatoid arthritis. However, the kinetics and regulatory mechanisms of how augmented transcriptional activation by STAT3 and NF-κB leads to F759 arthritis is unknown. We here show that the STAT3-NF-κB complex is present in the cytoplasm and nucleus and accumulates around NF-κB binding sites of the IL-6 promoter region and established a computer model that shows IL-6 and IL-17 (interleukin 17) signaling promotes the formation of the STAT3-NF-κB complex followed by its binding on promoter regions of NF-κB target genes to accelerate inflammatory responses, including the production of IL-6, epiregulin, and C-C motif chemokine ligand 2 (CCL2), phenotypes consistent with in vitro experiments. The binding also promoted cell growth in the synovium and the recruitment of T helper 17 (Th17) cells and macrophages in the joints. Anti-IL-6 blocking antibody treatment inhibited inflammatory responses even at the late phase, but anti-IL-17 and anti-TNFα antibodies did not. However, anti-IL-17 antibody at the early phase showed inhibitory effects, suggesting that the IL-6 amplifier is dependent on IL-6 and IL-17 stimulation at the early phase, but only on IL-6 at the late phase. These findings demonstrate the molecular mechanism of F759 arthritis can be recapitulated in silico and identify a possible therapeutic strategy for IL-6 amplifier-dependent chronic inflammatory diseases.
Collapse
Affiliation(s)
- Reiji Yamamoto
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Yamada
- Faculty of Information Science and Engineering, Okayama University of Science, Okayama, Japan
| | - Toru Atsumi
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kaoru Murakami
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Seiichiro Naito
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
- Team of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Izuru Ohki
- Team of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yuta Shinohara
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
| | - Jing-Jing Jiang
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Kamimura
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Hojyo
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeru Hashimoto
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
- Team of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
5
|
Sasaki H, Tanabe T, Tsuji T, Hotta K. Mechanism and treatment for chronic antibody-mediated rejection in kidney transplant recipients. Int J Urol 2023; 30:624-633. [PMID: 37306194 DOI: 10.1111/iju.15197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/11/2023] [Indexed: 06/13/2023]
Abstract
Chronic antibody-mediated rejection of kidney transplantation is a major cause of late-stage graft loss. Donor-specific antibodies are the main cause of antibody-mediated rejection; in particular, de novo donor-specific antibodies are a risk factor for chronic active antibody-mediated rejection. The level of de novo donor-specific antibodies tends to increase with time throughout long-term graft survival. Donor-specific antibodies induce humoral rejection through complement activation, which results in tissue injury and coagulation. Additionally, complement activation promotes the migration of inflammatory cells through the innate immune response, causing endothelial injury. This inflammatory response may cause persistent glomerulitis and peritubular capillaritis, leading to fixed pathological lesions that impair graft function. No treatment has been established for chronic antibody-mediated rejection, a condition in which antibody-mediated rejection becomes irreversible. Thus, antibody-mediated rejection must be detected and treated while it is still reversible. In this review, we discuss the development of de novo donor-specific antibodies and the mechanisms leading to chronic antibody-mediated rejection and summarize the current treatment options and the latest biomarkers for detecting chronic antibody-mediated rejection at an earlier stage.
Collapse
Affiliation(s)
- Hajime Sasaki
- Division of Renal Surgery and Transplantation, Department of Urology, Jichi Medical University Hospital, Shimotsuke, Japan
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Japan
| | - Tatsu Tanabe
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Japan
| | - Takahiro Tsuji
- Department of Pathology, Sapporo City General Hospital, Sapporo, Japan
| | - Kiyohiko Hotta
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
6
|
Teoh YB, Jiang JJ, Yamasaki T, Nagata N, Sugawara T, Hasebe R, Ohta H, Sasaki N, Yokoyama N, Nakamura K, Kagawa Y, Takiguchi M, Murakami M. An inflammatory bowel disease-associated SNP increases local thyroglobulin expression to develop inflammation in miniature dachshunds. Front Vet Sci 2023; 10:1192888. [PMID: 37519997 PMCID: PMC10375717 DOI: 10.3389/fvets.2023.1192888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Inflammatory colorectal polyp (ICRP) in miniature dachshunds (MDs) is a chronic inflammatory bowel disease (IBD) characterized by granulomatous inflammation that consists of neutrophil infiltration and goblet cell hyperplasia in the colon. Recently, we identified five MD-associated single-nucleotide polymorphisms (SNPs), namely PLG, TCOF1, TG, COL9A2, and COL4A4, by whole-exome sequencing. Here, we investigated whether TG c.4567C>T (p.R1523W) is associated with the ICRP pathology. We found that the frequency of the T/T SNP risk allele was significantly increased in MDs with ICRP. In vitro experiments showed that TG expression in non-immune cells was increased by inducing the IL-6 amplifier with IL-6 and TNF-α. On the other hand, a deficiency of TG suppressed the IL-6 amplifier. Moreover, recombinant TG treatment enhanced the activation of the IL-6 amplifier, suggesting that TG is both a positive regulator and a target of the IL-6 amplifier. We also found that TG expression together with two NF-κB targets, IL6 and CCL2, was increased in colon samples isolated from MDs with the T/T risk allele compared to those with the C/C non-risk allele, but serum TG was not increased. Cumulatively, these results suggest that the T/T SNP is an expression quantitative trait locus (eQTL) of TG mRNA in the colon, and local TG expression triggered by this SNP increases the risk of ICRP in MDs via the IL-6 amplifier. Therefore, TG c.4567C>T is a diagnostic target for ICRP in MDs, and TG-mediated IL-6 amplifier activation in the colon is a possible therapeutic target for ICRP.
Collapse
Affiliation(s)
- Yong Bin Teoh
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Yamasaki
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Noriyuki Nagata
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Toshiki Sugawara
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Noboru Sasaki
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Nozomu Yokoyama
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kensuke Nakamura
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Kida H, Jiang JJ, Matsui Y, Takahashi I, Hasebe R, Kawamura D, Endo T, Shibayama H, Kondo M, Nishio Y, Nishida K, Matsuno Y, Oikawa T, Kubota SI, Hojyo S, Iwasaki N, Hashimoto S, Tanaka Y, Murakami M. Dupuytren's contracture-associated SNPs increase SFRP4 expression in non-immune cells including fibroblasts to enhance inflammation development. Int Immunol 2023; 35:303-312. [PMID: 36719100 DOI: 10.1093/intimm/dxad004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023] Open
Abstract
Dupuytren's contracture (DC) is an inflammatory fibrosis characterized by fibroproliferative disorders of the palmar aponeurosis, for which there is no effective treatment. Although several genome-wide association studies have identified risk alleles associated with DC, the functional linkage between these alleles and the pathogenesis remains elusive. We here focused on two single nucleotide polymorphisms (SNPs) associated with DC, rs16879765 and rs17171229, in secreted frizzled related protein 4 (SFRP4). We investigated the association of SRFP4 with the IL-6 amplifier, which amplifies the production of IL-6, growth factors and chemokines in non-immune cells and aggravates inflammatory diseases via NF-κB enhancement. Knockdown of SFRP4 suppressed activation of the IL-6 amplifier in vitro and in vivo, whereas the overexpression of SFRP4 induced the activation of NF-κB-mediated transcription activity. Mechanistically, SFRP4 induced NF-κB activation by directly binding to molecules of the ubiquitination SFC complex, such as IkBα and βTrCP, followed by IkBα degradation. Furthermore, SFRP4 expression was significantly increased in fibroblasts derived from DC patients bearing the risk alleles. Consistently, fibroblasts with the risk alleles enhanced activation of the IL-6 amplifier. These findings indicate that the IL-6 amplifier is involved in the pathogenesis of DC, particularly in patients harboring the SFRP4 risk alleles. Therefore, SFRP4 is a potential therapeutic target for various inflammatory diseases and disorders, including DC.
Collapse
Affiliation(s)
- Hiroaki Kida
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichiro Matsui
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Section for Clinical Education, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ikuko Takahashi
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Daisuke Kawamura
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroki Shibayama
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Makoto Kondo
- Department of Orthopaedic Surgery, Hokkaido Orthopedic Memorial Hospital, Sapporo, Japan
| | - Yasuhiko Nishio
- Department of Orthopaedic Surgery, Hokkaido Orthopedic Memorial Hospital, Sapporo, Japan
| | - Kinya Nishida
- Department of Orthopaedic Surgery, Teine Keijinkai Hospital, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Tsukasa Oikawa
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Hojyo
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Group of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Group of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Yin DM, Yuan D, Sun RJ, Xu HZ, Hun SY, Sui XH, Shan NN. Identification of ORM1, vWF, SPARC, and PPBP as immune-related proteins involved in immune thrombocytopenia by quantitative LC-MS/MS. Clin Proteomics 2023; 20:24. [PMID: 37355563 DOI: 10.1186/s12014-023-09413-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/03/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is a common autoimmune disease characterized by loss of immune tolerance to platelet autoantigens leading to excessive destruction and insufficient production of platelets. METHOD Quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS) was performed to detect the differentially expressed proteins in bone marrow samples from active ITP patients and normal controls. RESULT Our bioinformatic analysis identified two upregulated proteins (ORM1 and vWF) and two downregulated proteins (PPBP and SPARC) related to immune function. The four proteins were all found to be related to the tumor necrosis factor (TNF) -α signalling pathway and involved in the pathogenesis of ITP in KEGG pathway analysis. CONCLUSION Bioinformatics analysis identified differentially expressed proteins in bone marrow that are involved in the TNF-α signalling pathway and are related to the activation of immune function in ITP patients. These findings could provide new ideas for research on the loss of immune tolerance in ITP patients.
Collapse
Affiliation(s)
- Dong-Mei Yin
- Department of Blood Transfusion, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Dai Yuan
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China
| | - Rui-Jie Sun
- Department of Rheumatology, Clinical Immunology Center, Peking Union Medical College Hospital, Beijing, 100000, China
| | - Hong-Zhi Xu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China
| | - Shou-Yong Hun
- Department of Blood Transfusion, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiao-Hui Sui
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China
| | - Ning-Ning Shan
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China.
| |
Collapse
|
9
|
Akabane K, Murakami K, Murakami M. Gateway reflexes are neural circuits that establish the gateway of immune cells to regulate tissue specific inflammation. Expert Opin Ther Targets 2023; 27:469-477. [PMID: 37318003 DOI: 10.1080/14728222.2023.2225215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Tissue-specific inflammatory diseases are regulated by several mechanisms. The gateway reflex and IL-6 amplifier are two mechanisms involved in diseases that depend on the inflammatory cytokine IL-6. The gateway reflex activates specific neural pathways that cause autoreactive CD4+ T cells to pass through gateways in blood vessels toward specific tissues in tissue-specific inflammatory diseases. These gateways are mediated by the IL-6 amplifier, which describes enhanced NF-κB activation in nonimmune cells including endothelial cells at specific sites. In total, we have reported six gateway reflexes defined by their triggering stimulus: gravity, pain, electric stimulation, stress, light, and joint inflammation. AREAS COVERED This review summarizes the gateway reflex and IL-6 amplifier for the development of tissue-specific inflammatory diseases. EXPERT OPINION We expect that the IL-6 amplifier and gateway reflex will lead to novel therapeutic and diagnostic methods for inflammatory diseases, particularly tissue-specific ones.
Collapse
Affiliation(s)
- Keiichiroh Akabane
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kaoru Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Institute for Vaccine Research and Development(HU-IVRed), Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Hasebe R, Murakami K, Harada M, Halaka N, Nakagawa H, Kawano F, Ohira Y, Kawamoto T, Yull FE, Blackwell TS, Nio-Kobayashi J, Iwanaga T, Watanabe M, Watanabe N, Hotta H, Yamashita T, Kamimura D, Tanaka Y, Murakami M. ATP spreads inflammation to other limbs through crosstalk between sensory neurons and interneurons. J Exp Med 2022; 219:213221. [PMID: 35579694 DOI: 10.1084/jem.20212019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 11/04/2022] Open
Abstract
Neural circuits between lesions are one mechanism through which local inflammation spreads to remote positions. Here, we show the inflammatory signal on one side of the joint is spread to the other side via sensory neuron-interneuron crosstalk, with ATP at the core. Surgical ablation or pharmacological inhibition of this neural pathway prevented inflammation development on the other side. Mechanistic analysis showed that ATP serves as both a neurotransmitter and an inflammation enhancer, thus acting as an intermediary between the local inflammation and neural pathway that induces inflammation on the other side. These results suggest blockade of this neural pathway, which is named the remote inflammation gateway reflex, may have therapeutic value for inflammatory diseases, particularly those, such as rheumatoid arthritis, in which inflammation spreads to remote positions.
Collapse
Affiliation(s)
- Rie Hasebe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Harada
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Nada Halaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Nakagawa
- Department of Molecular Neurosciences, Graduate School of Frontier Biosciences, Graduate School of Medicine, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Fuminori Kawano
- Department of Health and Sports Sciences, Graduate School of Medicine, and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yoshinobu Ohira
- Department of Health and Sports Sciences, Graduate School of Medicine, and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tadafumi Kawamoto
- Radioisotope Research Institute, Department of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Fiona E Yull
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | | | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuhiro Watanabe
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Harumi Hotta
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Toshihide Yamashita
- Department of Molecular Neurosciences, Graduate School of Frontier Biosciences, Graduate School of Medicine, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Group of Quantumimmunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan.,Group of Quantumimmunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
11
|
Shimoyama S, Nakagawa I, Jiang JJ, Matsumoto I, Chiorini JA, Hasegawa Y, Ohara O, Hasebe R, Ota M, Uchida M, Kamimura D, Hojyo S, Tanaka Y, Atsumi T, Murakami M. Sjögren's syndrome-associated SNPs increase GTF2I expression in salivary gland cells to enhance inflammation development. Int Immunol 2021; 33:423-434. [PMID: 34036345 DOI: 10.1093/intimm/dxab025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterized by inflammation with lymphoid infiltration and destruction of the salivary glands. Although many genome-wide association studies have revealed disease-associated risk alleles, the functions of the majority of these alleles are unclear. Here, we show previously unrecognized roles of GTF2I molecules by using two SS-associated single nucleotide polymorphisms (SNPs), rs73366469 and rs117026326 (GTF2I SNPs). We found that the risk alleles of GTF2I SNPs increased GTF2I expression and enhanced nuclear factor-kappa B (NF-κB) activation in human salivary gland cells via the NF-κB p65 subunit. Indeed, the knockdown of GTF2I suppressed inflammatory responses in mouse endothelial cells and in vivo. Conversely, the over-expression of GTF2I enhanced NF-κB reporter activity depending on its p65-binding N-terminal leucine zipper domain. GTF2I is highly expressed in the human salivary gland cells of SS patients expressing the risk alleles. Consistently, the risk alleles of GTF2I SNPs were strongly associated with activation of the IL-6 amplifier, which is hyperactivation machinery of the NF-κB pathway, and lymphoid infiltration in the salivary glands of SS patients. These results demonstrated that GTF2I expression in salivary glands is increased in the presence of the risk alleles of GTF2I SNPs, resulting in activation of the NF-κB pathway in salivary gland cells. They also suggest that GTF2I could be a new therapeutic target for SS.
Collapse
Affiliation(s)
- Shuhei Shimoyama
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan.,Department of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo 0600815, Japan
| | - Ikuma Nakagawa
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan.,Department of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo 0600815, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan.,Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian 710069, China
| | - Isao Matsumoto
- Division of Clinical Immunology, Major of Advanced Biological Applications, Graduate School Comprehensive Human Science, University of Tsukuba, Tsukuba 3050006, Japan
| | - John A Chiorini
- AAV Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshinori Hasegawa
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 2920818, Japan
| | - Osamu Ohara
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 2920818, Japan
| | - Rie Hasebe
- Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan
| | - Mitsutoshi Ota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan
| | - Mona Uchida
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan
| | - Shintaro Hojyo
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo 0600815, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan
| |
Collapse
|
12
|
Zhan P, Li H, Han M, Wang Z, Zhao J, Tu J, Shi X, Fu Y. PSMP Is Discriminative for Chronic Active Antibody-Mediated Rejection and Associate With Intimal Arteritis in Kidney Transplantation. Front Immunol 2021; 12:661911. [PMID: 33897709 PMCID: PMC8062877 DOI: 10.3389/fimmu.2021.661911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/08/2021] [Indexed: 01/06/2023] Open
Abstract
Chronic active antibody-mediated rejection (CAAMR) is an intermediate process that occurs during the development of chronic antibody-mediated rejection (CAMR), which is a key problem associated with the long-term kidney grafts survival. This study investigated the role played by PC3-secreted microprotein (PSMP) in the progression of CAAMR and CAMR. We showed that CAAMR and CAMR patients’ allografts dysfunction with declined survival rate, which suggested that earlier diagnosis and treatment of CAAMR might be important to prevent irreversible chronic injury of CAMR progression. We found PSMP was an important factor in the development of chronic antibody-mediated rejection. The PSMP expression increased significantly in CAAMR biopsy samples but not in CAMR and control patients, which distinguished CAAMR patients from CAMR and non-rejection patients. Moreover, our results showed that infiltration of CD68+ macrophages in CAAMR increased, and the correlation between CD68+ macrophages and PSMP expression in CAAMR patients was significant. Additionally, our data also revealed that intimal arteritis (v-lesion) accompanied by increased macrophage infiltration might have contributed to more graft loss in CAAMR, and PSMP expression was significantly associated with the v-lesion score. These results indicated that PSMP played an important role in the recruitment of macrophages and promote intimal arteritis inducing allograft lost in CAAMR progression. In future study PSMP could be a potential histopathological diagnostic biomarker and treatment target for CAAMR in kidney transplantation.
Collapse
Affiliation(s)
- Panpan Zhan
- Department of Kidney Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.,Department of Kidney Transplantation and Kidney Transplantation Research Laboratory, Tianjin First Central Hospital, Tianjin, China.,Key Laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, China
| | - Haizheng Li
- First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Mingzhe Han
- Institute of Hematology & Blood Diseases Hospital, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhen Wang
- Department of Kidney Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jie Zhao
- Department of Kidney Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jinpeng Tu
- Department of Kidney Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Xiaofeng Shi
- Department of Kidney Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yingxin Fu
- Department of Kidney Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.,Department of Kidney Transplantation and Kidney Transplantation Research Laboratory, Tianjin First Central Hospital, Tianjin, China.,Key Laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
13
|
Orosomucoid 1 Attenuates Doxorubicin-Induced Oxidative Stress and Apoptosis in Cardiomyocytes via Nrf2 Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5923572. [PMID: 33134382 PMCID: PMC7591952 DOI: 10.1155/2020/5923572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/22/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022]
Abstract
Doxorubicin (DOX) is an effective anticancer drug, but its therapeutic use is limited by its cardiotoxicity. The principal mechanisms of DOX-induced cardiotoxicity are oxidative stress and apoptosis in cardiomyocytes. Orosomucoid 1 (ORM1), an acute-phase protein, plays important roles in inflammation and ischemic stroke; however, the roles and mechanisms of ORM1 in DOX-induced cardiotoxicity remain unknown. Therefore, in the present study, we aimed to investigate the function of ORM1 in cardiomyocytes experiencing DOX-induced oxidative stress and apoptosis. A DOX-induced cardiotoxicity animal model was established in C57BL/6 mice by administering an intraperitoneal injection of DOX (20 mg/kg), and the control group was intraperitoneally injected with the same volume of sterilized saline. The effects were assessed after 7 d. Additionally, H9c2 cells were stimulated with DOX (10 μM) for 24 h. The results showed decreased ORM1 and increased oxidative stress and apoptosis after DOX stimulation in vivo and in vitro. ORM1 overexpression significantly reduced DOX-induced oxidative stress and apoptosis in H9c2 cells. ORM1 significantly increased the expression of nuclear factor-like 2 (Nrf2) and its downstream protein heme oxygenase 1 (HO-1) and reduced the expression of the lipid peroxidation end product 4-hydroxynonenal (4-HNE) and the level of cleaved caspase-3. In addition, Nrf2 silencing reversed the effects of ORM1 on DOX-induced oxidative stress and apoptosis in cardiomyocytes. In conclusion, ORM1 inhibited DOX-induced oxidative stress and apoptosis in cardiomyocytes by regulating the Nrf2/HO-1 pathway, which might provide a new treatment strategy for DOX-induced cardiotoxicity.
Collapse
|
14
|
Sumanth MS, Jacob SP, Abhilasha KV, Manne BK, Basrur V, Lehoux S, Campbell RA, Yost CC, McIntyre TM, Cummings RD, Weyrich AS, Rondina MT, Marathe GK. Different glycoforms of alpha-1-acid glycoprotein contribute to its functional alterations in platelets and neutrophils. J Leukoc Biol 2020; 109:915-930. [PMID: 33070381 DOI: 10.1002/jlb.3a0720-422r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
Alpha-1-acid glycoprotein (AGP-1) is a positive acute phase glycoprotein with uncertain functions. Serum AGP-1 (sAGP-1) is primarily derived from hepatocytes and circulates as 12-20 different glycoforms. We isolated a glycoform secreted from platelet-activating factor (PAF)-stimulated human neutrophils (nAGP-1). Its peptide sequence was identical to hepatocyte-derived sAGP-1, but nAGP-1 differed from sAGP-1 in its chromatographic behavior, electrophoretic mobility, and pattern of glycosylation. The function of these 2 glycoforms also differed. sAGP-1 activated neutrophil adhesion, migration, and neutrophil extracellular traps (NETosis) involving myeloperoxidase, peptidylarginine deiminase 4, and phosphorylation of ERK in a dose-dependent fashion, whereas nAGP-1 was ineffective as an agonist for these events. Furthermore, sAGP-1, but not nAGP-1, inhibited LPS-stimulated NETosis. Interestingly, nAGP-1 inhibited sAGP-1-stimulated neutrophil NETosis. The discordant effect of the differentially glycosylated AGP-1 glycoforms was also observed in platelets where neither of the AGP-1 glycoforms alone stimulated aggregation of washed human platelets, but sAGP-1, and not nAGP-1, inhibited aggregation induced by PAF or ADP, but not by thrombin. These functional effects of sAGP-1 correlated with intracellular cAMP accumulation and phosphorylation of the protein kinase A substrate vasodilator-stimulated phosphoprotein and reduction of Akt, ERK, and p38 phosphorylation. Thus, the sAGP-1 glycoform limits platelet reactivity, whereas nAGP-1 glycoform also limits proinflammatory actions of sAGP-1. These studies identify new functions for this acute phase glycoprotein and demonstrate that the glycosylation of AGP-1 controls its effects on 2 critical cells of acute inflammation.
Collapse
Affiliation(s)
- Mosale Seetharam Sumanth
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| | - Shancy P Jacob
- Department of Pediatrics, Division of Allergy and Immunology, University of Utah, Salt Lake City, Utah, USA
| | | | - Bhanu Kanth Manne
- Molecular Medicine Program, and Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sylvain Lehoux
- Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert A Campbell
- Molecular Medicine Program, and Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Christian C Yost
- Molecular Medicine Program, and Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, Utah, USA.,Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Thomas M McIntyre
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew S Weyrich
- Molecular Medicine Program, and Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Matthew T Rondina
- Molecular Medicine Program, and Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, Utah, USA.,The Geriatric Research Education and Clinical Center, Salt Lake City, Utah, USA.,Department of Internal Medicine, George E. Wahlen VAMC, Salt Lake City, Utah, USA
| | - Gopal K Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, Karnataka, India.,Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| |
Collapse
|