1
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Natarajan C, Le LHD, Gunasekaran M, Tracey KJ, Chernoff D, Levine YA. Electrical stimulation of the vagus nerve ameliorates inflammation and disease activity in a rat EAE model of multiple sclerosis. Proc Natl Acad Sci U S A 2024; 121:e2322577121. [PMID: 38968104 PMCID: PMC11252997 DOI: 10.1073/pnas.2322577121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Multiple sclerosis (MS) is a demyelinating central nervous system (CNS) disorder that is associated with functional impairment and accruing disability. There are multiple U.S. Food and Drug Administration (FDA)-approved drugs that effectively dampen inflammation and slow disability progression. However, these agents do not work well for all patients and are associated with side effects that may limit their use. The vagus nerve (VN) provides a direct communication conduit between the CNS and the periphery, and modulation of the inflammatory reflex via electrical stimulation of the VN (VNS) shows efficacy in ameliorating pathology in several CNS and autoimmune disorders. We therefore investigated the impact of VNS in a rat experimental autoimmune encephalomyelitis (EAE) model of MS. In this study, VNS-mediated neuroimmune modulation is demonstrated to effectively decrease EAE disease severity and duration, infiltration of neutrophils and pathogenic lymphocytes, myelin damage, blood-brain barrier disruption, fibrinogen deposition, and proinflammatory microglial activation. VNS modulates expression of genes that are implicated in MS pathogenesis, as well as those encoding myelin proteins and transcription factors regulating new myelin synthesis. Together, these data indicate that neuroimmune modulation via VNS may be a promising approach to treat MS, that not only ameliorates symptoms but potentially also promotes myelin repair (remyelination).
Collapse
Affiliation(s)
| | | | | | - Kevin J. Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY11030
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
| | | | - Yaakov A. Levine
- SetPoint Medical, Valencia, CA91355
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm171 76, Sweden
| |
Collapse
|
3
|
D’Haens G, Eberhardson M, Cabrijan Z, Danese S, van den Berg R, Löwenberg M, Fiorino G, Schuurman PR, Lind G, Almqvist P, Olofsson PS, Tracey KJ, Hanauer SB, Zitnik R, Chernoff D, Levine YA. Neuroimmune Modulation Through Vagus Nerve Stimulation Reduces Inflammatory Activity in Crohn's Disease Patients: A Prospective Open-label Study. J Crohns Colitis 2023; 17:1897-1909. [PMID: 37738465 PMCID: PMC10798868 DOI: 10.1093/ecco-jcc/jjad151] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND AIMS Crohn's disease [CD] is a debilitating, inflammatory condition affecting the gastrointestinal tract. There is no cure and sustained clinical and endoscopic remission is achieved by fewer than half of patients with current therapies. The immunoregulatory function of the vagus nerve, the 'inflammatory reflex', has been established in patients with rheumatoid arthritis and biologic-naive CD. The aim of this study was to explore the safety and efficacy of vagus nerve stimulation in patients with treatment-refractory CD, in a 16-week, open-label, multicentre, clinical trial. METHODS A vagus nerve stimulator was implanted in 17 biologic drug-refractory patients with moderately to severely active CD. One patient exited the study pre-treatment, and 16 patients were treated with vagus nerve stimulation [4/16 receiving concomitant biologics] during 16 weeks of induction and 24 months of maintenance treatment. Endpoints included clinical improvement, patient-reported outcomes, objective measures of inflammation [endoscopic/molecular], and safety. RESULTS There was a statistically significant and clinically meaningful decrease in CD Activity Index at Week 16 [mean ± SD: -86.2 ± 92.8, p = 0.003], a significant decrease in faecal calprotectin [-2923 ± 4104, p = 0.015], a decrease in mucosal inflammation in 11/15 patients with paired endoscopies [-2.1 ± 1.7, p = 0.23], and a decrease in serum tumour necrosis factor and interferon-γ [46-52%]. Two quality-of-life indices improved in 7/11 patients treated without biologics. There was one study-related severe adverse event: a postoperative infection requiring device explantation. CONCLUSIONS Neuroimmune modulation via vagus nerve stimulation was generally safe and well tolerated, with a clinically meaningful reduction in clinical disease activity associated with endoscopic improvement, reduced levels of faecal calprotectin and serum cytokines, and improved quality of life.
Collapse
Affiliation(s)
- Geert D’Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Michael Eberhardson
- Department of Medicine, Karolinska Institutet, Solna, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Zeljko Cabrijan
- Division of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Zagreb, Croatia
- Division of Gastroenterology, University of Applied Health Sciences, Zagreb, Croatia
- Josip Juraj Strossmayer University of Osijek School of Medicine, Osijek, Croatia
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Italy
- Department of Gastroenterology and Endoscopy, University Vita-Salute San Raffaele, Milano, Italy
| | - Remco van den Berg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mark Löwenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gionata Fiorino
- Department of Gastroenterology and Digestive Endoscopy, VIta-Salute San Raffaele Hospital, Milan, Italy
- IBD Unit, Department of Gastroenterology and Digestive Endoscopy, San Camillo-Forlanini Hospital, Rome, Italy
| | | | - Göran Lind
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Per Almqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
- Neurosurgery Stockholm AB, Stockholm, Sweden
| | - Peder S Olofsson
- Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Feinstein Institutes for Medical Research, Manhasset, New York
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Manhasset, New York
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Stephen B Hanauer
- Division of Gastroenterology and Hepatology, Northwestern University–Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ralph Zitnik
- SetPoint Medical, Valencia, California, USA
- Valerio Consulting, Santa Barbara, California, USA
| | | | - Yaakov A Levine
- Department of Medicine, Karolinska Institutet, Solna, Sweden
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- SetPoint Medical, Valencia, California, USA
| |
Collapse
|
4
|
Bi C, Guo S, Hu S, Chen J, Ye M, Liu Z. The microbiota-gut-brain axis and its modulation in the therapy of depression: comparison of efficacy of conventional drugs and traditional Chinese medicine approaches. Pharmacol Res 2022; 183:106372. [PMID: 35908662 DOI: 10.1016/j.phrs.2022.106372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
Depression is a common and severe mental disease that places a heavy burden on human society, which can lead to decreased cognitive function, energy loss, insomnia, and even suicide. Although medication plays an important role in improving the symptoms of depression, approximately one third of people with depression do not significantly benefit from medication and experience various adverse reactions. Recently, increasing evidence has shown that gut microbes play an important role in the occurrence and development of depression. There have been illuminating studies previously conducted on the relationship between antidepressant chemicals, traditional Chinese medicine, and the microbiota-gut-brain axis (MGBA). Therefore, in this review, we summarize the role of the MGBA in the occurrence and development of depression, especially the important role of the MGBA in the mechanism of action of antidepressants. Modulation of the MGBA is proposed to enhance the efficacy of antidepressant drugs and reduce their side effects and disease recurrence, so as to provide a new method for the treatment of depression.
Collapse
Affiliation(s)
- Chenchen Bi
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China
| | - Shitian Guo
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shijia Hu
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China
| | - Jiaqi Chen
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China
| | - Mengfei Ye
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing, Zhejiang, China
| | - Zheng Liu
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China; Department of Behavioral Neurosciences, Science Research Center of Medical College, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
5
|
Teratani T, Mikami Y, Kanai T. Neuroimmune crosstalk in the gut and liver. Int Immunol 2022; 34:475-484. [PMID: 35793533 DOI: 10.1093/intimm/dxac033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
It has long been assumed that the nervous system exerts distinct effects on immune functions, given the large number of immune disorders that are affected by mental stress. In fact, many different immune cells have been shown to possess a wide variety of neurotransmitter receptors and receive signals of various neurotransmitters, including acetylcholine and noradrenaline. Compared with the findings on local neuroimmune interactions, limited experimental techniques have so far failed to capture a comprehensive overview of neuroimmune interactions between distant organs and the autonomic nervous system in vivo, and the molecular mechanisms underlying local immune regulation of the nervous system have long remained unclear. However, the recent rapid progress in genetic recombination, microscopy and single-cell analysis has deepened our understanding of the anatomical and physiological functions of peripheral nerves at each organ to which they belong. Furthermore, the development of optogenetic and chemogenetic methods has enabled the artificial modulation of specific neuronal activities, and there has been remarkable progress in elucidation of the interaction between nerves and immune cells in vivo, particularly in barrier organs such as the gastrointestinal tract, respiratory tract and skin. This review focuses on the immunoregulatory mechanisms governed by the autonomic nervous system and outlines the latest findings in the regulation of enteric and hepatic immunity by the nervous system.
Collapse
Affiliation(s)
- Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
6
|
Wu Q, Zhu P, Liu X, Ji Q, Qian M. Nirvana: A Qualitative Study of Posttraumatic Growth in Adolescents and Young Adults with Inflammatory Bowel Disease. CHILDREN (BASEL, SWITZERLAND) 2022; 9:879. [PMID: 35740816 PMCID: PMC9222066 DOI: 10.3390/children9060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
(1) Background: Psychosomatic discomfort is prevalent among adolescents and young adults (AYAs) with inflammatory bowel disease (IBD). Post-traumatic growth (PTG) has been a protective factor in earlier research. However, little is known regarding PTG among AYAs with IBD. This study investigates the generation of PTG in adolescents and young adults with inflammatory bowel disease (IBD) and finds positive coping skills employed in clinical nursing practice. (2) Methods: In 2021, 32 individuals were interviewed utilizing a semi-structured interview guide. This study used qualitative content analysis. (3) Results: The interviews revealed five themes: spiritual change, internalized supportiveness, cognitive re-shaping, externalized behaviors, and future-oriented thinking. (4) Conclusions: The research revealed the presence of PTG in AYAs with IBD. To give tailored care to patients, medical professionals must monitor the state of their PTG development in a planned and focused manner.
Collapse
Affiliation(s)
- Qiwei Wu
- School of Nursing, Yangzhou University, Yangzhou 225009, China; (Q.W.); (X.L.); (Q.J.); (M.Q.)
| | - Pingting Zhu
- School of Nursing, Yangzhou University, Yangzhou 225009, China; (Q.W.); (X.L.); (Q.J.); (M.Q.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Xinyi Liu
- School of Nursing, Yangzhou University, Yangzhou 225009, China; (Q.W.); (X.L.); (Q.J.); (M.Q.)
| | - Qiaoying Ji
- School of Nursing, Yangzhou University, Yangzhou 225009, China; (Q.W.); (X.L.); (Q.J.); (M.Q.)
| | - Meiyan Qian
- School of Nursing, Yangzhou University, Yangzhou 225009, China; (Q.W.); (X.L.); (Q.J.); (M.Q.)
| |
Collapse
|
7
|
Tarnawski L, Olofsson PS. Inflammation neuroscience: neuro-immune crosstalk and interfaces. Clin Transl Immunology 2021; 10:e1352. [PMID: 34754449 PMCID: PMC8558388 DOI: 10.1002/cti2.1352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a key process in antimicrobial defence and tissue repair, and failure to properly regulate inflammation can result in tissue damage and death. Neural circuits play important roles throughout the course of an inflammatory response, and the neurophysiological and molecular mechanisms are only partly understood. Here, we review key evidence for the neural regulation of inflammation and discuss emerging technologies to further map and harness this neurophysiology, a cornerstone in the rapidly evolving field of inflammation neuroscience.
Collapse
Affiliation(s)
- Laura Tarnawski
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
| | - Peder S Olofsson
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
- Institute of Bioelectronic MedicineFeinstein Institutes for Medical ResearchManhassetNYUSA
| |
Collapse
|
8
|
Tracey KJ, Chavan S, Murakami M. Introduction: Electronic Medicine in Immunology Special Issue Part 1. Int Immunol 2021. [DOI: 10.1093/intimm/dxab024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Electronic Medicine in Immunology.
Collapse
Affiliation(s)
- Kevin J Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
- The Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Sangeeta Chavan
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
- The Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|