1
|
Gu H, Wang X, Lu M, Wang Y, Ren K, Zhang Y, Liu W, Hu G, Zeng W, Xia Y. Interferon-Alpha Induces Psoriatic Inflammation in Mice by Phosphorylating FOXO3. J Interferon Cytokine Res 2024; 44:260-270. [PMID: 38563809 DOI: 10.1089/jir.2023.0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Psoriasis is a chronic, immune-mediated inflammatory skin disease characterized by epidermal thickening and inflammatory cell infiltration. Excessive proliferation of keratinocytes and resistance to apoptosis lead to thickening of the epidermis. Plasmacytoid dendritic cells are involved in the occurrence of psoriasis mainly by secreting interferon-alpha (IFN-α). IFN-α is a glycoprotein with antiviral, antitumor, and immunomodulatory effects, but its role in psoriasis remains unclear. In this investigation, a mild psoriatic phenotype was observed in mice upon topical application of IFN-α cream, and the inflammation was exacerbated when combined with imiquimod (IMQ). Immunohistochemical analyses demonstrated that IFN-α induces psoriatic inflammation in mice by stimulating phosphorylation of forkhead box O3, consistent with the involvement of this protein in cell proliferation, apoptosis, and inflammation. Our results suggested that topical IFN-α caused psoriatic inflammation and that the psoriatic inflammation was exacerbated by the combination of IFN-α and IMQ, possibly due to the dysfunction of forkhead box O3.
Collapse
Affiliation(s)
- Hanjiang Gu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyu Wang
- Department of Dermatology, Jinling Hospital, Nanjing, China
| | - Mei Lu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yaqi Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kaixuan Ren
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yitian Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanglei Hu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Wang L, Yang F, Ye J, Zhang L, Jiang X. Insight into the role of IRF7 in skin and connective tissue diseases. Exp Dermatol 2024; 33:e15083. [PMID: 38794808 DOI: 10.1111/exd.15083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 05/26/2024]
Abstract
Interferons (IFNs) are signalling proteins primarily involved in initiating innate immune responses against pathogens and promoting the maturation of immune cells. Interferon Regulatory Factor 7 (IRF7) plays a pivotal role in the IFNs signalling pathway. The activation process of IRF7 is incited by exogenous or abnormal nucleic acids, which is followed by the identification via pattern recognition receptors (PRRs) and the ensuing signalling cascades. Upon activation, IRF7 modulates the expression of both IFNs and inflammatory gene regulation. As a multifunctional transcription factor, IRF7 is mainly expressed in immune cells, yet its presence is also detected in keratinocytes, fibroblasts, and various dermal cell types. In these cells, IRF7 is critical for skin immunity, inflammation, and fibrosis. IRF7 dysregulation may lead to autoimmune and inflammatory skin conditions, including systemic scleroderma (SSc), systemic lupus erythematosus (SLE), Atopic dermatitis (AD) and Psoriasis. This comprehensive review aims to extensively elucidate the role of IRF7 and its signalling pathways in immune cells and keratinocytes, highlighting its significance in skin-related and connective tissue diseases.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Fengjuan Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Ye
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Simón-Fuentes M, Ríos I, Herrero C, Lasala F, Labiod N, Luczkowiak J, Roy-Vallejo E, Fernández de Córdoba-Oñate S, Delgado-Wicke P, Bustos M, Fernández-Ruiz E, Colmenares M, Puig-Kröger A, Delgado R, Vega MA, Corbí ÁL, Domínguez-Soto Á. MAFB shapes human monocyte-derived macrophage response to SARS-CoV-2 and controls severe COVID-19 biomarker expression. JCI Insight 2023; 8:e172862. [PMID: 37917179 PMCID: PMC10807725 DOI: 10.1172/jci.insight.172862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Monocyte-derived macrophages, the major source of pathogenic macrophages in COVID-19, are oppositely instructed by macrophage CSF (M-CSF) or granulocyte macrophage CSF (GM-CSF), which promote the generation of antiinflammatory/immunosuppressive MAFB+ (M-MØ) or proinflammatory macrophages (GM-MØ), respectively. The transcriptional profile of prevailing macrophage subsets in severe COVID-19 led us to hypothesize that MAFB shapes the transcriptome of pulmonary macrophages driving severe COVID-19 pathogenesis. We have now assessed the role of MAFB in the response of monocyte-derived macrophages to SARS-CoV-2 through genetic and pharmacological approaches, and we demonstrate that MAFB regulated the expression of the genes that define pulmonary pathogenic macrophages in severe COVID-19. Indeed, SARS-CoV-2 potentiated the expression of MAFB and MAFB-regulated genes in M-MØ and GM-MØ, where MAFB upregulated the expression of profibrotic and neutrophil-attracting factors. Thus, MAFB determines the transcriptome and functions of the monocyte-derived macrophage subsets that underlie pulmonary pathogenesis in severe COVID-19 and controls the expression of potentially useful biomarkers for COVID-19 severity.
Collapse
Affiliation(s)
- Miriam Simón-Fuentes
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Israel Ríos
- Immunometabolism and Inflammation Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Cristina Herrero
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Fátima Lasala
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Nuria Labiod
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Joanna Luczkowiak
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Emilia Roy-Vallejo
- Rheumatology Department, University Hospital La Princesa and Research Institute, Madrid, Spain
| | | | - Pablo Delgado-Wicke
- Molecular Biology Unit, University Hospital La Princesa and Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Matilde Bustos
- Institute of Biomedicine of Seville (IBiS), Spanish National Research Council (CSIC), University of Seville, Virgen del Rocio University Hospital (HUVR), Seville, Spain
| | - Elena Fernández-Ruiz
- Molecular Biology Unit, University Hospital La Princesa and Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Colmenares
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Amaya Puig-Kröger
- Immunometabolism and Inflammation Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Rafael Delgado
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Miguel A. Vega
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Ángel L. Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | |
Collapse
|
4
|
Kabbej N, Ashby FJ, Riva A, Gamlin PD, Mandel RJ, Kunta A, Rouse CJ, Heldermon CD. Sex differences in brain transcriptomes of juvenile Cynomolgus macaques. RESEARCH SQUARE 2023:rs.3.rs-3422091. [PMID: 38045237 PMCID: PMC10690328 DOI: 10.21203/rs.3.rs-3422091/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background: Behavioral, social, and physical characteristics are posited to distinguish the sexes, yet research on transcription-level sexual differences in the brain is limited. Here, we investigated sexually divergent brain transcriptomics in prepubertal cynomolgus macaques, a commonly used surrogate species to humans. Methods: A transcriptomic profile using RNA sequencing was generated for the temporal lobe, ventral midbrain, and cerebellum of 3 female and 3 male cynomolgus macaques previously treated with an Adeno-associated virus vector mix. Statistical analyses to determine differentially expressed protein-coding genes in all three lobes were conducted using DeSeq2 with a false discovery rate corrected P value of .05. Results: We identified target genes in the temporal lobe, ventral midbrain, and cerebellum with functions in translation, immunity, behavior, and neurological disorders that exhibited statistically significant sexually divergent expression. Conclusions: We provide potential mechanistic insights to the epidemiological differences observed between the sexes with regards to mental health and infectious diseases, such as COVID19. Our results provide pre-pubertal information on sexual differences in non-human primate brain transcriptomics and may provide insight to health disparities between the biological sexes in humans.
Collapse
|
5
|
Highlights from International Immunology in 2022. Int Immunol 2023. [DOI: 10.1093/intimm/dxac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
6
|
Hikichi H, Seto S, Wakabayashi K, Hijikata M, Keicho N. Transcription factor MAFB controls type I and II interferon response-mediated host immunity in Mycobacterium tuberculosis-infected macrophages. Front Microbiol 2022; 13:962306. [DOI: 10.3389/fmicb.2022.962306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
MAFB, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B, has been identified as a candidate gene for early tuberculosis (TB) onset in Thai and Japanese populations. Here, we investigated the genome-wide transcriptional profiles of MAFB-knockdown (KD) macrophages infected with Mycobacterium tuberculosis (Mtb) to highlight the potential role of MAFB in host immunity against TB. Gene expression analysis revealed impaired type I and type II interferon (IFN) responses and enhanced oxidative phosphorylation in MAFB-KD macrophages infected with Mtb. The expression of inflammatory chemokines, including IFN-γ-inducible genes, was confirmed to be significantly reduced by knockdown of MAFB during Mtb infection. A similar effect of MAFB knockdown on type I and type II IFN responses and oxidative phosphorylation was also observed when Mtb-infected macrophages were activated by IFN-γ. Taken together, our results demonstrate that MAFB is involved in the immune response and metabolism in Mtb-infected macrophages, providing new insight into MAFB as a candidate gene to guide further study to control TB.
Collapse
|
7
|
Chen L, Jin S, Yang M, Gui C, Yuan Y, Dong G, Zeng W, Zeng J, Hu G, Qiao L, Wang J, Xi Y, Sun J, Wang N, Wang M, Xing L, Yang Y, Teng Y, Hou J, Bi Q, Cai H, Zhang G, Hong Y, Zhang Z. Integrated Single Cell and Bulk RNA-Seq Analysis Revealed Immunomodulatory Effects of Ulinastatin in Sepsis: A Multicenter Cohort Study. Front Immunol 2022; 13:882774. [PMID: 35634310 PMCID: PMC9130465 DOI: 10.3389/fimmu.2022.882774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Sepsis is a leading cause of morbidity and mortality in the intensive care unit, which is caused by unregulated inflammatory response leading to organ injuries. Ulinastatin (UTI), an immunomodulatory agent, is widely used in clinical practice and is associated with improved outcomes in sepsis. But its underlying mechanisms are largely unknown. Our study integrated bulk and single cell RNA-seq data to systematically explore the potential mechanisms of the effects of UTI in sepsis. After adjusting for potential confounders in the negative binomial regression model, there were more genes being downregulated than being upregulated in the UTI group. These down-regulated genes were enriched in the neutrophil involved immunity such as neutrophil activation and degranulation, indicating the immunomodulatory effects of UTI is mediated via regulation of neutrophil activity. By deconvoluting the bulk RNA-seq samples to obtain fractions of cell types, the Myeloid-derived suppressor cells (MDSC) were significantly expanded in the UTI treated samples. Further cell-cell communication analysis revealed some signaling pathways such as ANEEXIN, GRN and RESISTIN that might be involved in the immunomodulatory effects of UTI. The study provides a comprehensive reference map of transcriptional states of sepsis treated with UTI, as well as a general framework for studying UTI-related mechanisms.
Collapse
Affiliation(s)
- Lin Chen
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Senjun Jin
- Department of Emergency, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Min Yang
- The 2nd Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunmei Gui
- Department of Critical Care Medicine, The First People’s Hospital of Changde City, Changde, China
| | - Yingpu Yuan
- Department of Critical Care Medicine, The First People’s Hospital of Changde City, Changde, China
| | - Guangtao Dong
- Department of Emergency Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weizhong Zeng
- Department of Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, China
| | - Jing Zeng
- Department of Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, China
| | - Guoxin Hu
- Emergency Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Lujun Qiao
- Emergency Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Jinhua Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Yonglin Xi
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Jian Sun
- Department of Critical Care Medicine, Lishui Center Hospital, Lishui, China
| | - Nan Wang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Minmin Wang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Lifeng Xing
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Yang
- Department of Emergency Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| | - Yan Teng
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Junxia Hou
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qiaojie Bi
- Department of Emergency, Qingdao Municipal Hospital, QingDao University School of Medicine, Qingdao, China
| | - Huabo Cai
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yucai Hong
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongheng Zhang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Englmeier L, Subburayalu J. What's happening where when SARS-CoV-2 infects: are TLR7 and MAFB sufficient to explain patient vulnerability? Immun Ageing 2022; 19:6. [PMID: 35065665 PMCID: PMC8783172 DOI: 10.1186/s12979-022-00262-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/02/2022] [Indexed: 12/04/2022]
Abstract
The present COVID-19 pandemic has revealed that several characteristics render patients especially prone to developing severe COVID-19 disease, i.e., the male sex, obesity, and old age. An explanation for the observed pattern of vulnerability has been proposed which is based on the concept of low sensitivity of the TLR7-signaling pathway at the time of infection as a common denominator of vulnerable patient groups. We will discuss whether the concept of established TLR-tolerance in macrophages and dendritic cells of the obese and elderly prior to infection can explain not only the vulnerability of these two demographic groups towards development of a severe infection with SARS-CoV-2, but also the observed cytokine response in these vulnerable patients, which is skewed towards pro-inflammatory cytokines with a missing interferon signature.
Collapse
Affiliation(s)
- Ludwig Englmeier
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany. .,Patent Attorney Dr. Ludwig Englmeier, scrIPtum, Erlenaustrasse 11, 83080, Oberaudorf, Germany. .,Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany.
| | - Julien Subburayalu
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany.,Mildred Scheel Early Career Center, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|