1
|
Tapia-García EY, Chávez-Ramírez B, Larios-Serrato V, Arroyo-Herrera I, Ibarra JA, Estrada-de Los Santos P. A new nodule-associated bacterium, Cupriavidus consociatus sp. nov. Isolated from the root nodules of Leucaena sp. and Arachis sp. growing in a cacao field in Chiapas, Mexico. PLoS One 2025; 20:e0324390. [PMID: 40424226 DOI: 10.1371/journal.pone.0324390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Cupriavidus is a genus of bacteria that inhabit diverse ecological niches, including plant-associated and nodulating species. A previous survey of legume plants in the south of Mexico resulted in the isolation of several bacteria. This present study describes two Cupriavidus strains isolated from the nodules of Leucaena sp. and Arachis sp. plants growing in a cacao field in Chiapas, Mexico. Both strains (LEh25T and LEh21) shared identical 16S rRNA gene sequences and 98.4% identity with Cupriavidus oxalaticus Ox1T. However, the in silico average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values (99.99 and 99.90% similarity, respectively) indicated that they belonged to different genomic species when compared to type strains of Cupriavidus species (ANI ~ 93.2 and dDDH ~ 50% similarity). Phylogenomic analysis indicated that the novel species would be placed in the genus Cupriavidus next to C. oxalaticus Ox1T. Neither strain could fix nitrogen in a semisolid medium, and the interactions of the type strain with Phaseolus vulgaris, and Leucaena sp. revealed the formation of nodules, although these were ineffective. The genomic analysis demonstrated the presence of nitrogen fixation and nodulation genes with the same organization as in other strains of Cupriavidus and Paraburkholderia, although lacking NodB. To complement the study of the novel species, the strains were phenotypically and chemotaxonomically analyzed, with the results indicating differences with C. oxalaticus Ox1T and other similar type strains of Cupriavidus species. From these results, we propose the novel species Cupriavidus consociatus sp. nov. with the type strain LEh25T=TSD-314T = CDBB B-2085T.
Collapse
Affiliation(s)
- Erika-Yanet Tapia-García
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, México
| | - Belén Chávez-Ramírez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, México
| | - Violeta Larios-Serrato
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, México
| | - Ivan Arroyo-Herrera
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, México
| | - J Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, México
| | - Paulina Estrada-de Los Santos
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, México
| |
Collapse
|
2
|
Zhang J, Li B, Shen Z, Zhang Z, Feng J, Wong JWC. Antibiotic resistance patterns and cross-family ARG transfer in families Burkholderiaceae and Sphingomonadaceae: A large-scale genome-wide analysis of over 10 K genomes. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138642. [PMID: 40398027 DOI: 10.1016/j.jhazmat.2025.138642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/12/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
Members of Burkholderiaceae and Sphingomonadaceae play an active role in pollutant degradation, yet their antibiotic resistance risks are frequently overlooked. This study analyzed 9406 Burkholderiaceae and 2343 Sphingomonadaceae genomes to investigate the distribution, horizontal gene transfer (HGT), and co-occurrence patterns of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs). ARGs were prevalent in Burkholderiaceae (93.2 % of genomes), dominated by bacitracin (89.0 %), multidrug (88.1 %), and beta-lactam (40.5 %) resistance, while Sphingomonadaceae exhibited lower ARG prevalence (11.6 %). Notably, Burkholderia and Caballeronia displayed high multidrug resistance (10.1 ARGs per genome) and frequent ARG-MRG co-occurrence (84.4 %). Strong ARG-MRG-MGE correlations were observed in Burkholderiaceae, suggesting MGEs play a key role in resistance dissemination. Additionally, ARGs correlated with metabolic genes, linking metabolic versatility to resistance. Genes like capO (chloramphenicol oxidase) and blaTEM-116 (beta-lactamase) were shared among distantly related genera, while mcr-5.1 (MCR phosphoethanolamine transferase) co-occurred with MRGs across Cupriavidus species, highlighting HGT and co-selection risks. ARG transfer between Burkholderiaceae, Sphingomonadaceae and clinical pathogens was frequent (114-1306 events/10,000 genome pairs), with sulfonamide resistance dominating (51.3 % of HGT). These findings highlight Burkholderiaceae and Sphingomonadaceae as critical reservoirs of resistance genes and emphasize the need for enhanced surveillance and mitigation strategies to curb the spread of multidrug resistance.
Collapse
Affiliation(s)
- Jiayu Zhang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, China.
| | - Bing Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zehan Shen
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, China
| | - Zuowu Zhang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, China
| | - Jie Feng
- Shenzhen Academy of Environmental Sciences, Shenzhen, China
| | - Jonathan W C Wong
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, China.
| |
Collapse
|
3
|
Kelly SD, Butler J, Green H, Jones AM, Kenna DTD, Pai S, Muddiman KJ, McComb TA, Barrand BM, Bennett V, Fejer G, Upton M. Genomic insights and phenotypic characterization of three multidrug resistant Cupriavidus strains from the cystic fibrosis lung. J Appl Microbiol 2025; 136:lxaf093. [PMID: 40246707 DOI: 10.1093/jambio/lxaf093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 04/04/2025] [Accepted: 04/16/2025] [Indexed: 04/19/2025]
Abstract
AIMS We aimed to investigate phenotypic and genomic traits of three Cupriavidus spp. isolates recovered from people with cystic fibrosis (PWCF). These bacteria are recognized as emerging pathogens in PWCF. METHODS AND RESULTS Using short and long sequencing reads, we assembled three hybrid complete genomes for the genus Cupriavidus, adding to the 45 published currently, describing multipartite genomes and plasmids. The isolates likely represent three different species, and they carry a cumulative total of 30 antibiotic resistance genes with high homology to well-characterized resistance determinants from other bacteria. Multidrug resistance to antibiotics used in CF management was observed in all three isolates. However, two treatments were active across all isolates: cefotaxime and piperacillin/tazobactam. Biofilm formation was only seen at physiological temperatures (37°C) and lost at 20°C and all isolates had low lethality in Galleria mellonella larvae. Isolates demonstrated variable motility, with one non-motile isolate carrying a disrupted flhD transcriptional regulator, abolishing flagella expression. CONCLUSIONS Our Cupriavidus spp. isolates showed considerable genomic and phenotypic variability that may impact their virulence and treatment in PWCF, where multidrug resistance will negate treatments and biofilm formation and motility play key roles in infection establishment, as seen in CF pathogens like Pseudomonas aeruginosa. More detailed investigation of clinical Cupriavidus isolates is needed for full understanding of the risk they pose to PWCF.
Collapse
Affiliation(s)
- Sean D Kelly
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom
| | - James Butler
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom
| | - Heather Green
- Manchester Adult Cystic Fibrosis Centre, Wythenshawe Hospital, Southmoor Road, Wythenshawe, Manchester, Greater Manchester M23 9LT, United Kingdom
| | - Andrew M Jones
- Manchester Adult Cystic Fibrosis Centre, Wythenshawe Hospital, Southmoor Road, Wythenshawe, Manchester, Greater Manchester M23 9LT, United Kingdom
| | - Dervla T D Kenna
- Public Health Microbiology Division, Specialised Microbiology and Laboratories Directorate, UK Health Security Agency, Colindale Avenue, London, Greater London NW9 5EQ, United Kingdom
| | - Sumita Pai
- Royal Papworth Hospital NHS Foundation Trust, Papworth Road, Cambridge, Cambridgeshire CB2 0AY, United Kingdom
| | - Katie J Muddiman
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom
| | - Trudie A McComb
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom
| | - Briana M Barrand
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom
| | - Vicky Bennett
- Department of Life Sciences, University of Bath, Claverton Down, Bath, Somerset BA2 7AY, United Kingdom
| | - Gyorgy Fejer
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom
| | - Mathew Upton
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom
| |
Collapse
|
4
|
Bonilla González C, Álvarez-Olmos M, Marulanda-Tobar D, Londoño JP. Cupriavidus pauculus Infection Associated With Extracorporeal Membrane Oxygenation in a Pediatric Patient. Cureus 2025; 17:e78203. [PMID: 40027011 PMCID: PMC11870781 DOI: 10.7759/cureus.78203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
We describe a critically ill neonate in the postoperative period of complex cardiovascular surgery who required extracorporeal membrane oxygenation (ECMO) and developed bacteremia caused by Cupriavidus pauculus. This uncommon infection in pediatric patients associated with ECMO highlights the diagnostic suspicion of bacteremia due to this non-fermentative Gram-negative bacillus. The report emphasizes early clinical evaluation and treatment and underscores the need for strict protocols to disinfect ECMO circuits, alerting health institutions to the potential transmission risk through these systems.
Collapse
|
5
|
Lopez NV, Ruiz C. Resistance to carbapenems in the urban soil isolate Cupriavidus taiwanensis S2-1-W is associated with OXA-1206, a newly discovered carbapenemase. J Appl Microbiol 2024; 135:lxae265. [PMID: 39419775 DOI: 10.1093/jambio/lxae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
AIMS Cupriavidus isolates are found in environmental and clinical samples and are often resistant to carbapenems, which are last-resort antibiotics. However, their carbapenem-resistance molecular mechanisms remain unknown. This study aimed to (i) characterize and sequence the carbapenem-resistant soil isolate Cupriavidus taiwanensis S2-1-W to uncover its antibiotic resistance determinants; and (ii) clone and characterize a putative novel carbapenemase gene identified in this isolate. METHODS AND RESULTS Antibiotic susceptibility testing of C. taiwanensis S2-1-W revealed that it was resistant to most carbapenems, other β-lactams, and aminoglycosides tested. Genome sequencing of this isolate revealed a complex chromosomal resistome that included multidrug efflux pump genes, one aminoglycoside transferase gene, and three β-lactamase genes. Among them, we identified a novel putative class D β-lactamase gene (blaOXA-1206) that is highly conserved among other sequenced C. taiwanensis isolates. Cloning and characterization of blaOXA-1206 confirmed that it encodes for a newly discovered carbapenemase (OXA-1206) that confers resistance to carbapenems and other β-lactams. CONCLUSION Carbapenem-resistance in C. taiwanensis S2-1-W is associated with a newly discovered carbapenemase, OXA-1206.
Collapse
Affiliation(s)
- Nicolas V Lopez
- Department of Biology, California State University Northridge, Northridge, CA 91330, United States
| | - Cristian Ruiz
- Department of Biology, California State University Northridge, Northridge, CA 91330, United States
| |
Collapse
|
6
|
Zhao W, Yang H, Huang Y, Fan X, Tong Z. Genomic Sequencing of Clinical Cupriavidus gilardii Isolates Revealed Their Diverse Antimicrobial Resistance Mechanisms. Infect Drug Resist 2024; 17:655-664. [PMID: 38379587 PMCID: PMC10878315 DOI: 10.2147/idr.s438328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Purpose Cupriavidus gilardii is an emerging multidrug-resistant pathogen found in many environments and few clinical samples. The clinical infectiousness, pathogenicity, and resistance mechanisms of C. gilardii are still unclear due to the lack of clinical and sequencing data. We need to obtain insight into the clinical characteristics, virulence, and resistance mechanisms of C. gilardii. Patients and Methods We isolated five C. gilardii isolates from hospitalized patients and carried out assay, culture and genome sequencing. We analyzed the genomic features of clinical C. gilardii isolates and took insight into their clinical characteristics, virulence, and resistance mechanisms. Results These isolates were resistant to meropenem, gentamicin, and other antimicrobials due to intrinsic resistance genes. Furthermore, the sequencing results revealed the widespread presence of the MCR-5.1 gene in C. gilardii. The virulence magnitude of C. gilardii is closely correlated with the number of virulence factors they carry. Some C. gilardii strains can acquire resistance to levofloxacin through gyrA gene mutation during treatment. The diverse antimicrobial resistance mechanisms challenge the treatment of C. gilardii infections. Conclusion We present the genomic characteristics of clinically isolated C. gilardii to improve (i) our understanding of this pathogen and (ii) treatment options.
Collapse
Affiliation(s)
- Weichao Zhao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
- Department of Respiratory Medicine, Strategic Support Force Medical Center, Beijing, People’s Republic of China
| | - Huqin Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Nithimongkolchai N, Hinwan Y, Kaewseekhao B, Chareonsudjai P, Reungsang P, Kraiklang R, Chareonsudjai S, Wonglakorn L, Chetchotisakd P, Sirichoat A, Nithichanon A, Faksri K. MALDI-TOF MS analysis of Burkholderia pseudomallei and closely related species isolated from soils and water in Khon Kaen, Thailand. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105532. [PMID: 37995885 DOI: 10.1016/j.meegid.2023.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Melioidosis is caused by Burkholderia pseudomallei (Bp) acquired from the environment. Conventional identification methods for environmental Bp are challenging due to the presence of closely related species. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is accurate for bacterial identification, but has been little used to identify Bp from environmental samples. This study aims to evaluate MALDI-TOF MS for the identification of Bp and closely related species isolated from environmental samples in Thailand using whole-genome sequencing (WGS) as the gold standard, including determining the best sample preparation method for this purpose. We identified Bp (n = 22), Burkholderia spp. (n = 28), and other bacterial species (n = 32) using WGS. MALDI-TOF analysis of all Bp isolates yielded results consistent with WGS. A decision-tree algorithm identified 16 important variable peaks, using the protein extraction method (PEM), demonstrating distinct MALDI-TOF profiles for the three categories (Bp, Burkholderia spp. and "other bacterial species"). Three biomarker peaks (4060, 5196, and 6553 Da) could discriminate Bp from other Burkholderia and closely related species with 100% sensitivity and specificity. Hence, the MALDI-TOF technique has shown its potential as a species discriminatory tool, providing results comparable to WGS for classification and surveillance of environmental Bp.
Collapse
Affiliation(s)
- Nut Nithimongkolchai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yothin Hinwan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Benjawan Kaewseekhao
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Pisit Chareonsudjai
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Pipat Reungsang
- College of Computing, Khon Kaen University, Khon Kaen, Thailand
| | - Ratthaphol Kraiklang
- Nutrition for Health Program, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Lumyai Wonglakorn
- Clinical Laboratory Section, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Auttawit Sirichoat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Arnone Nithichanon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
8
|
Shah A, Elgharably H, Mehta A, Lum J. First Case of Cupravidus paculus Infection in a Lung Transplant Recipient: A Case Report. Transplant Proc 2023; 55:1984-1987. [PMID: 37517882 DOI: 10.1016/j.transproceed.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023]
Abstract
Cupravidus paculus is a rare Gram-negative bacterium that can cause a wide range of severe infections, largely in immunocompromised patients. It is a ubiquitous organism found in natural and man-made environments and in the hospital. Herein, we present the first case of C. paculus infection in a lung transplant recipient, which required prolonged antibiotic therapy to achieve complete clearance. Additionally, we review the existing literature on the clinical and microbiological profile of C. paculus, along with previously documented cases of clinical infections. Our case highlights the potential sources of C. paculus infections, the importance of appropriate disinfection protocols for medical devices, and the need for antibiotic sensitivities to guide treatment.
Collapse
Affiliation(s)
- Aniruddh Shah
- Department of Internal Medicine, Cleveland Clinic, Cleveland, Ohio.
| | - Haytham Elgharably
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Atul Mehta
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jessica Lum
- Department of Infectious Disease, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
9
|
Fang X, Lu K, Sun S, Zhang H, Yu X, Han W. Infection caused by Cupriavidus gilardii in a convalescent COVID-19 patient. Int J Infect Dis 2023; 134:287-289. [PMID: 37481110 DOI: 10.1016/j.ijid.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023] Open
Abstract
Cupriavidus gilardii is an aerobic, gram-negative bacillus that can opportunistically infect immunocompromised patients or those undergoing invasive procedures. We reported a case caused by C. gilardii in a previously basic healthy 78-year-old male, who had COVID-19 and had used corticosteroids recently. The bacterium was identified as C. gilardii by the metagenomic next-generation sequencing from the patient's bronchoalveolar lavage fluid and blood. In addition, this is the first time that we isolated C. gilardii from bronchoalveolar lavage fluid, which provides clinical experience in rare bacterial infections.
Collapse
Affiliation(s)
- Xuejie Fang
- School of Clinical Medicine, Weifang Medical University, Wei Fang, China; Department of Respiratory and Critical Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Kongmiao Lu
- Department of Respiratory and Critical Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China; Respiratory Disease Key Laboratory of Qingdao, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Shuqi Sun
- School of Clinical Medicine, Weifang Medical University, Wei Fang, China; Department of Respiratory and Critical Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Hao Zhang
- School of Clinical Medicine, Weifang Medical University, Wei Fang, China; Department of Respiratory and Critical Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Xinjuan Yu
- Respiratory Disease Key Laboratory of Qingdao, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China; Clinical Research Center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Wei Han
- Department of Respiratory and Critical Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China; Respiratory Disease Key Laboratory of Qingdao, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China.
| |
Collapse
|
10
|
Costabile A, Corona G, Sarnsamak K, Atar-Zwillenberg D, Yit C, King AJ, Vauzour D, Barone M, Turroni S, Brigidi P, Hauge-Evans AC. Wholegrain fermentation affects gut microbiota composition, phenolic acid metabolism and pancreatic beta cell function in a rodent model of type 2 diabetes. Front Microbiol 2022; 13:1004679. [PMID: 36386661 PMCID: PMC9643864 DOI: 10.3389/fmicb.2022.1004679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
The intestinal microbiota plays an important role in host metabolism via production of dietary metabolites. Microbiota imbalances are linked to type 2 diabetes (T2D), but dietary modification of the microbiota may promote glycemic control. Using a rodent model of T2D and an in vitro gut model system, this study investigated whether differences in gut microbiota between control mice and mice fed a high-fat, high-fructose (HFHFr) diet influenced the production of phenolic acid metabolites following fermentation of wholegrain (WW) and control wheat (CW). In addition, the study assessed whether changes in metabolite profiles affected pancreatic beta cell function. Fecal samples from control or HFHFr-fed mice were fermented in vitro with 0.1% (w/v) WW or CW for 0, 6, and 24 h. Microbiota composition was determined by bacterial 16S rRNA sequencing and phenolic acid (PA) profiles by UPLC-MS/MS. Cell viability, apoptosis and insulin release from pancreatic MIN6 beta cells and primary mouse islets were assessed in response to fermentation supernatants and selected PAs. HFHFr mice exhibited an overall dysbiotic microbiota with an increase in abundance of proteobacterial taxa (particularly Oxalobacteraceae) and Lachnospiraceae, and a decrease in Lactobacillus. A trend toward restoration of diversity and compositional reorganization was observed following WW fermentation at 6 h, although after 24 h, the HFHFr microbiota was monodominated by Cupriavidus. In parallel, the PA profile was significantly altered in the HFHFr group compared to controls with decreased levels of 3-OH-benzoic acid, 4-OH-benzoic acid, isoferulic acid and ferulic acid at 6 h of WW fermentation. In pancreatic beta cells, exposure to pre-fermentation supernatants led to inhibition of insulin release, which was reversed over fermentation time. We conclude that HFHFr mice as a model of T2D are characterized by a dysbiotic microbiota, which is modulated by the in vitro fermentation of WW. The differences in microbiota composition have implications for PA profile dynamics and for the secretory capacity of pancreatic beta cells.
Collapse
Affiliation(s)
- Adele Costabile
- School of Life and Health Sciences, University of Roehampton London, London, United Kingdom
| | - Giulia Corona
- School of Life and Health Sciences, University of Roehampton London, London, United Kingdom
| | - Kittiwadee Sarnsamak
- School of Life and Health Sciences, University of Roehampton London, London, United Kingdom
| | | | - Chesda Yit
- School of Life and Health Sciences, University of Roehampton London, London, United Kingdom
| | - Aileen J. King
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Astrid C. Hauge-Evans
- School of Life and Health Sciences, University of Roehampton London, London, United Kingdom
- *Correspondence: Astrid C. Hauge-Evans,
| |
Collapse
|
11
|
Kugler A, Brigmon RL, Friedman A, Coutelot FM, Polson SW, Seaman JC, Simpson W. Bioremediation of copper in sediments from a constructed wetland ex situ with the novel bacterium Cupriavidus basilensis SRS. Sci Rep 2022; 12:17615. [PMID: 36271237 PMCID: PMC9587019 DOI: 10.1038/s41598-022-20930-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/21/2022] [Indexed: 01/21/2023] Open
Abstract
The H-02 constructed wetland was designed to remove metals (primarily copper and zinc) to treat building process water and storm water runoff from multiple sources associated with the Tritium Facility at the DOE-Savannah River Site, Aiken, SC. The concentration of Cu and Zn in the sediments has increased over the lifetime of the wetland and is a concern. A bioremediation option was investigated at the laboratory scale utilizing a newly isolated bacterium of the copper metabolizing genus Cupriavidus isolated from Tim's Branch Creek, a second-order stream that eventually serves as a tributary to the Savannah River, contaminated with uranium and other metals including copper, nickel, and mercury. Cupriavidus basilensis SRS is a rod-shaped, gram-negative bacterium which has been shown to have predatory tendencies. The isolate displayed resistance to the antibiotics ofloxacin, tetracycline, ciprofloxacin, select fungi, as well as Cu2+ and Zn2+. Subsequent ribosomal sequencing demonstrated a 100% confidence for placement in the genus Cupriavidus and a 99.014% match to the C. basilensis type strain. When H-02 wetland samples were inoculated with Cupriavidus basilensis SRS samples showed significant (p < 0.05) decrease in Cu2+ concentrations and variability in Zn2+ concentrations. Over the 72-h incubation there were no significant changes in the inoculate densities (106-108 cells/ML) indicating Cupriavidus basilensis SRS resiliency in this environment. This research expands our understanding of the Cupriavidus genus and demonstrates the potential for Cupriavidus basilensis SRS to bioremediate sites impacted with heavy metals, most notably copper.
Collapse
Affiliation(s)
- Alex Kugler
- grid.451247.10000 0004 0367 4086Savannah River National Laboratory, Bldg. 999W, Aiken, SC USA
| | - Robin L. Brigmon
- grid.451247.10000 0004 0367 4086Savannah River National Laboratory, Bldg. 999W, Aiken, SC USA
| | - Abby Friedman
- grid.451247.10000 0004 0367 4086Savannah River National Laboratory, Bldg. 999W, Aiken, SC USA
| | - Fanny M. Coutelot
- grid.26090.3d0000 0001 0665 0280Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC USA
| | - Shawn W. Polson
- grid.33489.350000 0001 0454 4791Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE USA
| | - John C. Seaman
- grid.213876.90000 0004 1936 738XUniversity of Georgia Savannah River Ecology Laboratory, Aiken, SC USA
| | - Waltena Simpson
- grid.263782.a0000 0004 1936 8892Department of Biological Sciences, South Carolina State University, Orangeburg, SC USA
| |
Collapse
|
12
|
Lambauer V, Kratzer R. Lab-Scale Cultivation of Cupriavidus necator on Explosive Gas Mixtures: Carbon Dioxide Fixation into Polyhydroxybutyrate. Bioengineering (Basel) 2022; 9:204. [PMID: 35621482 PMCID: PMC9138072 DOI: 10.3390/bioengineering9050204] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Aerobic, hydrogen oxidizing bacteria are capable of efficient, non-phototrophic CO2 assimilation, using H2 as a reducing agent. The presence of explosive gas mixtures requires strict safety measures for bioreactor and process design. Here, we report a simplified, reproducible, and safe cultivation method to produce Cupriavidus necator H16 on a gram scale. Conditions for long-term strain maintenance and mineral media composition were optimized. Cultivations on the gaseous substrates H2, O2, and CO2 were accomplished in an explosion-proof bioreactor situated in a strong, grounded fume hood. Cells grew under O2 control and H2 and CO2 excess. The starting gas mixture was H2:CO2:O2 in a ratio of 85:10:2 (partial pressure of O2 0.02 atm). Dissolved oxygen was measured online and was kept below 1.6 mg/L by a stepwise increase of the O2 supply. Use of gas compositions within the explosion limits of oxyhydrogen facilitated production of 13.1 ± 0.4 g/L total biomass (gram cell dry mass) with a content of 79 ± 2% poly-(R)-3-hydroxybutyrate in a simple cultivation set-up with dissolved oxygen as the single controlled parameter. Approximately 98% of the obtained PHB was formed from CO2.
Collapse
Affiliation(s)
- Vera Lambauer
- Austrian Centre of Industrial Biotechnology (ACIB), Krenngasse 37, A-8010 Graz, Austria;
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/II, A-8010 Graz, Austria
| | - Regina Kratzer
- Austrian Centre of Industrial Biotechnology (ACIB), Krenngasse 37, A-8010 Graz, Austria;
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/II, A-8010 Graz, Austria
| |
Collapse
|
13
|
Inkster T, Wilson G, Black J, Mallon J, Connor M, Weinbren M. Cupriavidus spp and other waterborne organisms in healthcare water systems across the United Kingdom. J Hosp Infect 2022; 123:80-86. [PMID: 35181399 DOI: 10.1016/j.jhin.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cupriavidus pauculus is a rare clinical pathogen with cases having been linked to contaminated hospital water systems. An outbreak of three cases of C. pauculus and other waterborne organisms was reported in a Glasgow hospital in 2018. AIMS The aim of this study was to determine whether Cupriavidus spp are present in hospital water systems elsewhere in Scotland and the UK and to ascertain the optimal laboratory methodology for detection. We also sought to establish where in the water system these organisms are detected and whether a selective media could be developed for isolation. In addition, we tested water samples for the presence of other Gram negative waterborne organisms. METHODS Water samples were received from ten UK NHS hospitals and from various parts of the water system. Isolates were plated on to TSA and Pseudomonas Isolation Agar and further identified using MALDI-TOF and 16S PCR FINDINGS: Cupriavidus spp. were detected in four of ten hospitals tested and all five isolates were from the periphery of the water system. All hospitals had evidence of other OPPPs. Cupriavidus spp. were identified using TSA, with some isolates growing on Pseudomonas isolation agar; as such they may be inadvertently be detected when testing water specifically for Pseudomonas aeruginosa. CONCLUSION This study demonstrates that isolation of Cupriavidus spp. was not unique to the Glasgow incident, these bacteria being present in hospital water systems elsewhere in the UK. We therefore recommend water testing in response to clinical cases. Consideration should also be given to water testing following bacteraemias due to other rare and unusual water borne pathogens.
Collapse
Affiliation(s)
- T Inkster
- Department of Microbiology, Queen Elizabeth University Hospital, Glasgow, UK; NHS Assure, National Services Scotland, Edinburgh, UK.
| | - G Wilson
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
| | - J Black
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
| | - J Mallon
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
| | - M Connor
- Department of Microbiology, Dumfries and Galloway Hospital, UK
| | - M Weinbren
- NHS Assure, National Services Scotland, Edinburgh, UK
| |
Collapse
|
14
|
Butler J, Kelly SD, Muddiman KJ, Besinis A, Upton M. Hospital sink traps as a potential source of the emerging multidrug-resistant pathogen Cupriavidus pauculus: characterization and draft genome sequence of strain MF1. J Med Microbiol 2022; 71. [PMID: 35113779 PMCID: PMC8941954 DOI: 10.1099/jmm.0.001501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Introduction.Cupriavidus pauculus is historically found in soil and water but has more recently been reported to cause human infection and death. Hospital sink traps can serve as a niche for bacterial persistence and a platform for horizontal gene transfer, with evidence of dissemination of pathogens in hospital plumbing systems driving nosocomial infection. Gap Statement. This paper presents the first C. pauculus strain isolated from a hospital sink trap. There are only six genome assemblies available on NCBI for C. pauculus; two of these are PacBio/Illumina hybrids. This paper presents the first ONT/Illumina hybrid assembly, with five contigs. The other assemblies available consist of 37, 38, 111 and 227 contigs. This paper also presents data on biofilm formation and lethal dose in Galleria mellonella; there is little published information describing these aspects of virulence. Aim. The aims were to identify the isolate found in a hospital sink trap, characterize its genome, and assess whether it could pose a risk to human health. Methodology. The genome was sequenced, and a hybrid assembly of short and long reads produced. Antimicrobial susceptibility was determined by the broth microdilution method. Virulence was assessed by measuring in vitro biofilm formation compared to Pseudomonas aeruginosa and in vivo lethality in Galleria mellonella larvae. Results. The isolate was confirmed to be a strain of C. pauculus, with a 6.8 Mb genome consisting of 6468 coding sequences and an overall G+C content of 63.9 mol%. The genome was found to contain 12 antibiotic resistance genes, 8 virulence factor genes and 33 metal resistance genes. The isolate can be categorized as resistant to meropenem, amoxicillin, amikacin, gentamicin and colistin, but susceptible to cefotaxime, cefepime, imipenem and ciprofloxacin. Clear biofilm formation was seen in all conditions over 72 h and exceeded that of P. aeruginosa when measured at 37 °C in R2A broth. Lethality in G. mellonella larvae over 48 h was relatively low. Conclusion. The appearance of a multidrug-resistant strain of C. pauculus in a known pathogen reservoir within a clinical setting should be considered concerning. Further work should be completed to compare biofilm formation and in vivo virulence between clinical and environmental strains, to determine how easily environmental strains may establish human infection. Infection control teams and clinicians should be aware of the emerging nature of this pathogen and further work is needed to minimize the impact of contaminated hospital plumbing systems on patient outcomes.
Collapse
Affiliation(s)
- James Butler
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth PL4 8AA, UK
| | - Sean D Kelly
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Katie J Muddiman
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Alexandros Besinis
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth PL4 8AA, UK.,Peninsula Dental School, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Mathew Upton
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
15
|
Beauruelle C, Lamoureux C, Mashi A, Ramel S, Le Bihan J, Ropars T, Dirou A, Banerjee A, Tandé D, Le Bars H, Héry-Arnaud G. In Vitro Activity of 22 Antibiotics against Achromobacter Isolates from People with Cystic Fibrosis. Are There New Therapeutic Options? Microorganisms 2021; 9:microorganisms9122473. [PMID: 34946075 PMCID: PMC8703882 DOI: 10.3390/microorganisms9122473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022] Open
Abstract
Bacteria belonging to the genus Achromobacter are increasingly isolated from respiratory samples of people with cystic fibrosis (PWCF). The management of this multidrug-resistant genus is challenging and characterised by a lack of international recommendations, therapeutic guidelines and data concerning antibiotic susceptibility, especially concerning the newer antibiotics. The objective of this study was to describe the antibiotic susceptibility of Achromobacter isolates from PWCF, including susceptibility to new antibiotics. The minimum inhibitory concentrations (MICs) of 22 antibiotics were determined for a panel of 23 Achromobacter isolates from 19 respiratory samples of PWCF. Two microdilution MIC plates were used: EUMDROXF® plate (Sensititre) and Micronaut-S Pseudomonas MIC® plate (Merlin) and completed by a third method if necessary (E-test® or UMIC®). Among usual antimicrobial agents, the most active was imipenem (70% susceptibility). Trimethoprim-sulfamethoxazole, piperacillin and tigecycline (65%, 56% and 52% susceptibility, respectively) were still useful for the treatment of Achromobacter infections. Among new therapeutic options, β-lactams combined with a β-lactamase-inhibitor did not bring benefits compared to β-lactam alone. On the other hand, cefiderocol appeared as a promising therapeutic alternative for managing Achromobacter infections in PWCF. This study provides the first results on the susceptibility of clinical Achromobacter isolates concerning new antibiotics. More microbiological and clinical data are required to establish the optimal treatment of Achromobacter infections.
Collapse
Affiliation(s)
- Clémence Beauruelle
- University Brest, INSERM, EFS, UMR 1078, GGB, 29200 Brest, France; (C.L.); (G.H.-A.)
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
- Correspondence: ; Tel.:+332-98-14-51-05
| | - Claudie Lamoureux
- University Brest, INSERM, EFS, UMR 1078, GGB, 29200 Brest, France; (C.L.); (G.H.-A.)
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
| | - Arsid Mashi
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
| | - Sophie Ramel
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; (S.R.); (J.L.B.); (T.R.); (A.D.); (A.B.)
| | - Jean Le Bihan
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; (S.R.); (J.L.B.); (T.R.); (A.D.); (A.B.)
| | - Thomas Ropars
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; (S.R.); (J.L.B.); (T.R.); (A.D.); (A.B.)
| | - Anne Dirou
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; (S.R.); (J.L.B.); (T.R.); (A.D.); (A.B.)
| | - Anandadev Banerjee
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; (S.R.); (J.L.B.); (T.R.); (A.D.); (A.B.)
| | - Didier Tandé
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
| | - Hervé Le Bars
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
| | - Geneviève Héry-Arnaud
- University Brest, INSERM, EFS, UMR 1078, GGB, 29200 Brest, France; (C.L.); (G.H.-A.)
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
| |
Collapse
|
16
|
Abstract
This paper presents the first description of the mcr-5.1 gene in a colistin-resistant Cupriavidus gilardii isolate from well water that supplies a maternity hospital in Algeria. The whole-genome sequence of this strain showed the presence of putative β-lactamase, aac(3)-IVa, and multidrug efflux pump-encoding genes, which could explain the observed multidrug resistance phenotype. Our findings are of great interest, as we highlight a potential contamination route for the spread of mcr genes. IMPORTANCE Colistin resistance mediated by mcr genes in Gram-negative bacteria has gained significant attention worldwide. This is due to the ability of these genes to be horizontally transferred between different bacterial genera and species. Aquatic environments have been suggested to play an important role in the emergence and spread of this resistance mechanism. Here, we describe the first report of an mcr-5-positive Cupriavidus gilardii aquatic isolate through its isolation from well water in Algeria. The significance of our study is in shedding the light on an important environmental reservoir of mcr genes.
Collapse
|