1
|
Nolan LM, Webber MA, Filloux A. Throwing a spotlight on genomic dark matter: the power and potential of transposon-insertion sequencing. J Biol Chem 2025:110231. [PMID: 40378959 DOI: 10.1016/j.jbc.2025.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/29/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025] Open
Abstract
Linking genotype to phenotype is a central goal in biology. In the microbiological field, transposon mutagenesis is a technique that has been widely used since the 1970's to facilitate this connection. The development of modern 'omics approaches and next-generation sequencing, have allowed high-throughput association between genes and their putative function. In 2009, four different variations of modern transposon-insertion sequencing (TIS) approaches were published, being referred to as transposon-directed insertion-site sequencing (TraDIS), transposon sequencing (Tn-seq), insertion sequencing (INSeq) and high-throughput insertion tracking by deep sequencing (HITS). These approaches exploit a similar concept to allow estimation of the essentiality or contribution to fitness of each gene in any bacterial genome. The main rationale is to perform a comparative analysis of the abundance of specific transposon mutants under one or more selective conditions. The approaches themselves only vary in the transposon used for mutagenesis, and in the methodology used for sequencing library preparation. In this review, we discuss how TIS approaches have been used to facilitate a major shift in our fundamental understanding of bacterial biology in a range of areas. We focus on several aspects including pathogenesis, biofilm development, polymicrobial interactions in various ecosystems, and antimicrobial resistance. These studies have provided new insight into bacterial physiology and revealed predicted functions for hundreds of genes previously representing genomic 'dark matter'. We also discuss how TIS approaches have been used to understand complex bacterial systems and interactions and how future developments of TIS could continue to accelerate and enrich our understanding of bacterial biology.
Collapse
Affiliation(s)
- Laura M Nolan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore; Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norwich Medical School, Norwich Research Park, Norwich, UK; Center for Microbial Interactions, Norwich Research Park, Norwich, UK
| | - Alain Filloux
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore; Lee Kon Chian School of Medicine, Nanyang Technological University, Singapore; Imperial, Centre for Bacterial Resistance Biology, London, UK
| |
Collapse
|
2
|
Peng B, Li H, Peng XX. Metabolic state-driven nutrient-based approach to combat bacterial antibiotic resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:24. [PMID: 40185857 PMCID: PMC11971349 DOI: 10.1038/s44259-025-00092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 03/03/2025] [Indexed: 04/07/2025]
Abstract
To combat antibiotic resistance, one innovative approach, known as the metabolic state-driven approach, exploits the fact that exogenous nutrient metabolites can stimulate uptake of antibiotics. The most effective nutrient metabolites are identified by comparing metabolic states between antibiotic-sensitive and -resistant bacteria. When bacteria are exposed to the specific nutrient metabolites, they undergo a form of metabolic reprogramming. This review summarizes the recent progress on the metabolic state-driven approach.
Collapse
Affiliation(s)
- Bo Peng
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Hui Li
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, PR China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
- Guangdong Litai Pharmaceutical Co. LTD, Jieyang, PR China.
| |
Collapse
|
3
|
Ma Y, Pirolo M, Giarratana L, Leth Nielsen K, Häussler S, Guardabassi L. Chromosomal genes modulating fosfomycin susceptibility in uropathogenic Escherichia coli: a genome-wide analysis. Antimicrob Agents Chemother 2025; 69:e0141724. [PMID: 39998293 PMCID: PMC11963563 DOI: 10.1128/aac.01417-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Escherichia coli acquires fosfomycin resistance through chromosomal mutations that reduce drug uptake and by drug-inactivating enzymes. However, the complete resistance mechanisms remain to be elucidated. The aim of this study was to elucidate the genetic mechanisms regulating fosfomycin susceptibility in uropathogenic E. coli (UPEC). We constructed a highly saturated transposon mutant library containing >340,000 unique Tn5 insertions in a clinical UPEC strain. We conducted transposon-directed insertion site sequencing (TraDIS) to screen for chromosomal genes whose mutations are beneficial for bacterial growth and survival in the presence of fosfomycin at 4 and 32 µg/mL. TraDIS analysis identified 67 genes including known resistance determinants (n = 13) as well as a set of novel genes modulating fosfomycin susceptibility (n = 54). These genes are involved in pyruvate metabolism, pentose phosphate pathway, nucleotide biosynthesis, DNA repair, protein translation, cellular iron homeostasis, and biotin biosynthesis. Deletion of 16 selected genes in the wild-type strain resulted in growth advantages and decreased susceptibility when exposed to fosfomycin. Notably, deletion of DNA repair genes (i.e., mutL and mutS) and purine synthesis genes (i.e., purB and its upstream gene hflD) led to the most significant advantages in competitive and non-competitive growth in the presence of fosfomycin, as well as the highest increase of fosfomycin MIC (8- to 16-fold). These findings provide a genome-wide overview of genes required for maintaining fosfomycin susceptibility in E. coli, highlighting new mutations and functional pathways that may be used by UPEC to develop clinical resistance.
Collapse
Affiliation(s)
- Yibing Ma
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mattia Pirolo
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lily Giarratana
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Karen Leth Nielsen
- Department of Clinical Microbiology, Rigshospitalet, København Ø, Denmark
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
4
|
Mediati DG, Blair TA, Costas A, Monahan LG, Söderström B, Charles IG, Duggin IG. Genetic requirements for uropathogenic E. coli proliferation in the bladder cell infection cycle. mSystems 2024; 9:e0038724. [PMID: 39287381 PMCID: PMC11495030 DOI: 10.1128/msystems.00387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) requires an adaptable physiology to survive the wide range of environments experienced in the host, including gut and urinary tract surfaces. To identify UPEC genes required during intracellular infection, we developed a transposon-directed insertion-site sequencing approach for cellular infection models and searched for genes in a library of ~20,000 UTI89 transposon-insertion mutants that are specifically required at the distinct stages of infection of cultured bladder epithelial cells. Some of the bacterial functional requirements apparent in host bladder cell growth overlapped with those for M9-glycerol, notably nutrient utilization, polysaccharide and macromolecule precursor biosynthesis, and cell envelope stress tolerance. Two genes implicated in the intracellular bladder cell infection stage were confirmed through independent gene deletion studies: neuC (sialic acid capsule biosynthesis) and hisF (histidine biosynthesis). Distinct sets of UPEC genes were also implicated in bacterial dispersal, where UPEC erupts from bladder cells in highly filamentous or motile forms upon exposure to human urine, and during recovery from infection in a rich medium. We confirm that the dedD gene linked to septal peptidoglycan remodeling is required during UPEC dispersal from human bladder cells and may help stabilize cell division or the cell wall during envelope stress created by host cells. Our findings support a view that the host intracellular environment and infection cycle are multi-nutrient limited and create stress that demands an array of biosynthetic, cell envelope integrity, and biofilm-related functions of UPEC. IMPORTANCE Urinary tract infections (UTIs) are one of the most frequent infections worldwide. Uropathogenic Escherichia coli (UPEC), which accounts for ~80% of UTIs, must rapidly adapt to highly variable host environments, such as the gut, bladder sub-surface, and urine. In this study, we searched for UPEC genes required for bacterial growth and survival throughout the cellular infection cycle. Genes required for de novo synthesis of biomolecules and cell envelope integrity appeared to be important, and other genes were also implicated in bacterial dispersal and recovery from infection of cultured bladder cells. With further studies of individual gene function, their potential as therapeutic targets may be realized. This study expands knowledge of the UTI cycle and establishes an approach to genome-wide functional analyses of stage-resolved microbial infections.
Collapse
Affiliation(s)
- Daniel G. Mediati
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Tamika A. Blair
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Ariana Costas
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
- Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Leigh G. Monahan
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Ian G. Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Iain G. Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
5
|
Liu C, Tian T, Shi Y, Li M, Hong L, Zhou J, Liu J, Zhong Y, Wang X, Wang Z, Bai X, Wang L, Li C, Wu Z. Enhancing antibacterial photodynamic therapy with NIR‐activated gold nanoclusters: Atomic‐precision size effect on reducing bacterial biofilm formation and virulence. AGGREGATE 2024. [DOI: 10.1002/agt2.666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
AbstractPersistent biofilm infections pose a critical health threat with their relentless presence and amplified antibiotic resistance. Traditional antibacterial photodynamic therapy can inhibit bacteria extracellularly but struggles to control biofilm formation and virulence. Thus, there is an urgent need to develop photosensitizers, such as ultra‐small gold nanoclusters (AuNCs), that can penetrate biofilms and internalize into bacteria. However, AuNCs still face the challenge of insufficient reactive oxygen species (ROS) production and limited near‐infrared light absorption. This study develops a model of indocyanine green (ICG)‐sensitized AuNCs with atomic‐precision size effect. This approach achieved near‐infrared light absorption while inhibiting radiation transitions, thereby regulating the generation of ROS. Notably, different‐sized AuNCs (Au10NCs, Au15NCs, Au25NCs) yielded varied ROS types, resulting from different energy level distributions and electron transfer rates. ICG‐Au15NCs achieved a treatment efficacy of 99.94% against Staphylococcus aureus infections in vitro and significantly accelerated wound healing in vivo. Moreover, this study highlights the unique role of ICG‐AuNCs in suppressing quorum sensing, virulence, and ABC transporters compared to their larger counterparts. This strategy demonstrates that atomic‐precision size effect of AuNCs paves the way for innovative approaches in antibacterial photodynamic therapy for infection control.
Collapse
Affiliation(s)
- Chengyu Liu
- Department of Prosthodontics Jilin Provincial Key Laboratory of Tooth Development and Remodeling School and Hospital of Stomatology Jilin University Changchun China
| | - Tenghui Tian
- Hospital of Affiliated Changchun University of Chinese Medicine Branch of National Clinical Research Center for Chinese Medicine Cardiology Changchun China
| | - Yujia Shi
- Department of Oral Implantology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering Jilin University Changchun China
| | - Meiqi Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering Jilin University Changchun China
| | - Le Hong
- Hospital of Affiliated Changchun University of Chinese Medicine Branch of National Clinical Research Center for Chinese Medicine Cardiology Changchun China
| | - Jing Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering Jilin University Changchun China
| | - Jia Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering Jilin University Changchun China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering Jilin university Changchun China
| | - Xue Wang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering Jilin university Changchun China
| | - Zhenyu Wang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering Jilin university Changchun China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering Jilin university Changchun China
| | - Lin Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering Jilin University Changchun China
| | - Chunyan Li
- Department of Prosthodontics Jilin Provincial Key Laboratory of Tooth Development and Remodeling School and Hospital of Stomatology Jilin University Changchun China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering Jilin university Changchun China
| |
Collapse
|
6
|
Wellner SM, Alobaidallah MSA, Fei X, Herrero-Fresno A, Olsen JE. Genome-wide identification of fitness-genes in aminoglycoside-resistant Escherichia coli during antibiotic stress. Sci Rep 2024; 14:4163. [PMID: 38378700 PMCID: PMC10879529 DOI: 10.1038/s41598-024-54169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Resistance against aminoglycosides is widespread in bacteria. This study aimed to identify genes that are important for growth of E. coli during aminoglycoside exposure, since such genes may be targeted to re-sensitize resistant E. coli to treatment. We constructed three transposon mutant libraries each containing > 230.000 mutants in E. coli MG1655 strains harboring streptomycin (aph(3″)-Ib/aph(6)-Id), gentamicin (aac(3)-IV), or neomycin (aph(3″)-Ia) resistance gene(s). Transposon Directed Insertion-site Sequencing (TraDIS), a combination of transposon mutagenesis and high-throughput sequencing, identified 56 genes which were deemed important for growth during streptomycin, 39 during gentamicin and 32 during neomycin exposure. Most of these fitness-genes were membrane-located (n = 55) and involved in either cell division, ATP-synthesis or stress response in the streptomycin and gentamicin exposed libraries, and enterobacterial common antigen biosynthesis or magnesium sensing/transport in the neomycin exposed library. For validation, eight selected fitness-genes/gene-clusters were deleted (minCDE, hflCK, clsA and cpxR associated with streptomycin and gentamicin resistance, and phoPQ, wecA, lpp and pal associated with neomycin resistance), and all mutants were shown to be growth attenuated upon exposure to the corresponding antibiotics. In summary, we identified genes that are advantageous in aminoglycoside-resistant E. coli during antibiotic stress. In addition, we increased the understanding of how aminoglycoside-resistant E. coli respond to antibiotic exposure.
Collapse
Affiliation(s)
- Sandra Marina Wellner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Mosaed Saleh A Alobaidallah
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, 21423, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, 22384, Jeddah, Saudi Arabia
| | - Xiao Fei
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Ana Herrero-Fresno
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Universidade da Santiago de Compostela (USC), Campus Terra, 27002, Lugo, Spain.
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| |
Collapse
|
7
|
Hirakawa H, Takita A, Sato Y, Hiramoto S, Hashimoto Y, Ohshima N, Minamishima YA, Murakami M, Tomita H. Inactivation of ackA and pta Genes Reduces GlpT Expression and Susceptibility to Fosfomycin in Escherichia coli. Microbiol Spectr 2023; 11:e0506922. [PMID: 37199605 PMCID: PMC10269713 DOI: 10.1128/spectrum.05069-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/29/2023] [Indexed: 05/19/2023] Open
Abstract
Fosfomycin is used to treat a variety of bacterial infections, including urinary tract infections caused by Escherichia coli. In recent years, quinolone-resistant and extended-spectrum β-lactamase (ESBL)-producing bacteria have been increasing. Because fosfomycin is effective against many of these drug-resistant bacteria, the clinical importance of fosfomycin is increasing. Against this background, information on the mechanisms of resistance and the antimicrobial activity of this drug is desired to enhance the usefulness of fosfomycin therapy. In this study, we aimed to explore novel factors affecting the antimicrobial activity of fosfomycin. Here, we found that ackA and pta contribute to fosfomycin activity against E. coli. ackA and pta mutant E. coli had reduced fosfomycin uptake capacity and became less sensitive to this drug. In addition, ackA and pta mutants had decreased expression of glpT that encodes one of the fosfomycin transporters. Expression of glpT is enhanced by a nucleoid-associated protein, Fis. We found that mutations in ackA and pta also caused a decrease in fis expression. Thus, we interpret the decrease in glpT expression in ackA and pta defective strains to be due to a decrease in Fis levels in these mutants. Furthermore, ackA and pta are conserved in multidrug-resistant E. coli isolated from patients with pyelonephritis and enterohemorrhagic E. coli, and deletion of ackA and pta from these strains resulted in decreased susceptibility to fosfomycin. These results suggest that ackA and pta in E. coli contribute to fosfomycin activity and that mutation of these genes may pose a risk of reducing the effect of fosfomycin. IMPORTANCE The spread of drug-resistant bacteria is a major threat in the field of medicine. Although fosfomycin is an old type of antimicrobial agent, it has recently come back into the limelight because of its effectiveness against many drug-resistant bacteria, including quinolone-resistant and ESBL-producing bacteria. Since fosfomycin is taken up into the bacteria by GlpT and UhpT transporters, its antimicrobial activity fluctuates with changes in GlpT and UhpT function and expression. In this study, we found that inactivation of the ackA and pta genes responsible for the acetic acid metabolism system reduced GlpT expression and fosfomycin activity. In other words, this study shows a new genetic mutation that leads to fosfomycin resistance in bacteria. The results of this study will lead to further understanding of the mechanism of fosfomycin resistance and the creation of new ideas to enhance fosfomycin therapy.
Collapse
Affiliation(s)
- Hidetada Hirakawa
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Ayako Takita
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yumika Sato
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Suguru Hiramoto
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yusuke Hashimoto
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Noriyasu Ohshima
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yoji A. Minamishima
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
- Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
8
|
Holden ER, Yasir M, Turner AK, Wain J, Charles IG, Webber MA. Genome-wide analysis of genes involved in efflux function and regulation within Escherichia coli and Salmonella enterica serovar Typhimurium. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36745554 DOI: 10.1099/mic.0.001296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of multidrug-resistant bacteria is increasing globally, with efflux pumps being a fundamental platform limiting drug access and synergizing with other mechanisms of resistance. Increased expression of efflux pumps is a key feature of most cells that are resistant to multiple antibiotics. Whilst expression of efflux genes can confer benefits, production of complex efflux systems is energetically costly and the expression of efflux is highly regulated, with cells balancing benefits against costs. This study used TraDIS-Xpress, a genome-wide transposon mutagenesis technology, to identify genes in Escherichia coli and Salmonella Typhimurium involved in drug efflux and its regulation. We exposed mutant libraries to the canonical efflux substrate acriflavine in the presence and absence of the efflux inhibitor phenylalanine-arginine β-naphthylamide. Comparisons between conditions identified efflux-specific and drug-specific responses. Known efflux-associated genes were easily identified, including acrAB, tolC, marRA, ramRA and soxRS, confirming the specificity of the response. Further genes encoding cell envelope maintenance enzymes and products involved with stringent response activation, DNA housekeeping, respiration and glutathione biosynthesis were also identified as affecting efflux activity in both species. This demonstrates the deep relationship between efflux regulation and other cellular regulatory networks. We identified a conserved set of pathways crucial for efflux activity in these experimental conditions, which expands the list of genes known to impact on efflux efficacy. Responses in both species were similar and we propose that these common results represent a core set of genes likely to be relevant to efflux control across the Enterobacteriaceae.
Collapse
Affiliation(s)
- Emma R Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - A Keith Turner
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - John Wain
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Ian G Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
9
|
Yasir M, Turner AK, Lott M, Rudder S, Baker D, Bastkowski S, Page AJ, Webber MA, Charles IG. Long-read sequencing for identification of insertion sites in large transposon mutant libraries. Sci Rep 2022; 12:3546. [PMID: 35241765 PMCID: PMC8894413 DOI: 10.1038/s41598-022-07557-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
Transposon insertion site sequencing (TIS) is a powerful method for associating genotype to phenotype. However, all TIS methods described to date use short nucleotide sequence reads which cannot uniquely determine the locations of transposon insertions within repeating genomic sequences where the repeat units are longer than the sequence read length. To overcome this limitation, we have developed a TIS method using Oxford Nanopore sequencing technology that generates and uses long nucleotide sequence reads; we have called this method LoRTIS (Long-Read Transposon Insertion-site Sequencing). LoRTIS enabled the unique localisation of transposon insertion sites within long repetitive genetic elements of E. coli, such as the transposase genes of insertion sequences and copies of the ~ 5 kb ribosomal RNA operon. We demonstrate that LoRTIS is reproducible, gives comparable results to short-read TIS methods for essential genes, and better resolution around repeat elements. The Oxford Nanopore sequencing device that we used is cost-effective, small and easily portable. Thus, LoRTIS is an efficient means of uniquely identifying transposon insertion sites within long repetitive genetic elements and can be easily transported to, and used in, laboratories that lack access to expensive DNA sequencing facilities.
Collapse
Affiliation(s)
- Muhammad Yasir
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich, NR4 7UQ, UK.
| | - A Keith Turner
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich, NR4 7UQ, UK
| | - Martin Lott
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich, NR4 7UQ, UK
| | - Steven Rudder
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich, NR4 7UQ, UK
| | - David Baker
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich, NR4 7UQ, UK
| | - Sarah Bastkowski
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich, NR4 7UQ, UK
| | - Andrew J Page
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich, NR4 7UQ, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich, NR4 7UQ, UK.,Norwich Medical School, Norwich Research Park, Colney Lane, Norwich, NR4 7TJ, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Ian G Charles
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich, NR4 7UQ, UK.,Norwich Medical School, Norwich Research Park, Colney Lane, Norwich, NR4 7TJ, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
10
|
Birolo G, Telatin A. BamToCov, an efficient toolkit for sequence coverage calculations. Bioinformatics 2022; 38:2617-2618. [PMID: 35199151 PMCID: PMC9048650 DOI: 10.1093/bioinformatics/btac125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Motivation Many genomics applications require the computation of nucleotide coverage of a reference genome or the ability to determine how many reads map to a reference region. Results BamToCov is a toolkit for rapid and flexible coverage computation that relies on the most memory efficient algorithm and is designed for integration in pipelines, given its ability to read alignment files from streams. The tools in the suite can process sorted BAM or CRAM files, allowing the user to extract coverage information via different filtering approaches and to save the output in different formats (BED, Wig or counts). The BamToCov algorithm can also handle strand-specific and/or physical coverage analyses. Availability and implementation This program, accessory utilities and their documentation are freely available at https://github.com/telatin/BamToCov. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Giovanni Birolo
- Medical Sciences Department, University of Turin, 10126 Turin, Italy
| | - Andrea Telatin
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ, Norwich, UK
| |
Collapse
|
11
|
Goodall ECA, Isom GL, Rooke JL, Pullela K, Icke C, Yang Z, Boelter G, Jones A, Warner I, Da Costa R, Zhang B, Rae J, Tan WB, Winkle M, Delhaye A, Heinz E, Collet JF, Cunningham AF, Blaskovich MA, Parton RG, Cole JA, Banzhaf M, Chng SS, Vollmer W, Bryant JA, Henderson IR. Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth. PLoS Genet 2021; 17:e1009586. [PMID: 34941903 PMCID: PMC8741058 DOI: 10.1371/journal.pgen.1009586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/07/2022] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
The cell envelope is essential for viability in all domains of life. It retains enzymes and substrates within a confined space while providing a protective barrier to the external environment. Destabilising the envelope of bacterial pathogens is a common strategy employed by antimicrobial treatment. However, even in one of the best studied organisms, Escherichia coli, there remain gaps in our understanding of how the synthesis of the successive layers of the cell envelope are coordinated during growth and cell division. Here, we used a whole-genome phenotypic screen to identify mutants with a defective cell envelope. We report that loss of yhcB, a conserved gene of unknown function, results in loss of envelope stability, increased cell permeability and dysregulated control of cell size. Using whole genome transposon mutagenesis strategies, we report the comprehensive genetic interaction network of yhcB, revealing all genes with a synthetic negative and a synthetic positive relationship. These genes include those previously reported to have a role in cell envelope biogenesis. Surprisingly, we identified genes previously annotated as essential that became non-essential in a ΔyhcB background. Subsequent analyses suggest that YhcB functions at the junction of several envelope biosynthetic pathways coordinating the spatiotemporal growth of the cell, highlighting YhcB as an as yet unexplored antimicrobial target. All life depends on a cell envelope to enclose the chemical reactions that make life possible. But how do cell envelopes grow? How each component of the cell envelope is incorporated into the envelope at the correct amount, in the correct place, and at the correct time, to prevent cell death, has been a long-standing question in bacteriology. Using a unique combination of high throughput chemical genetic screens we identified yhcB, a conserved gene of unknown function, required for the maintenance of cell envelope integrity in Escherichia coli. Loss of YhcB results in aberrant cell size driven by the production of excess membrane phospholipids. Subsequent molecular and biochemical analyses suggest YhcB influences the spatiotemporal biogenesis of LPS, peptidoglycan and membrane phospholipids. Our data indicate YhcB is a key regulator of cell envelope growth in Gram-negative bacteria playing a crucial role in coordinating cell width, elongation, and division to maintain cell envelope integrity.
Collapse
Affiliation(s)
- Emily C. A. Goodall
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- * E-mail: (ECAG); (IRH)
| | - Georgia L. Isom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Jessica L. Rooke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Karthik Pullela
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Christopher Icke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Zihao Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Gabriela Boelter
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Isabel Warner
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Rochelle Da Costa
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Bing Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Wee Boon Tan
- Department of Chemistry, National University of Singapore, Singapore
| | - Matthias Winkle
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Antoine Delhaye
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Adam F. Cunningham
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Mark A. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Australia
| | - Jeff A. Cole
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jack A. Bryant
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ian R. Henderson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- * E-mail: (ECAG); (IRH)
| |
Collapse
|
12
|
Turner AK, Yasir M, Bastkowski S, Telatin A, Page A, Webber M, Charles I. Chemical biology-whole genome engineering datasets predict new antibacterial combinations. Microb Genom 2021; 7. [PMID: 34874820 PMCID: PMC8767339 DOI: 10.1099/mgen.0.000718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Trimethoprim and sulfamethoxazole are used commonly together as cotrimoxazole for the treatment of urinary tract and other infections. The evolution of resistance to these and other antibacterials threatens therapeutic options for clinicians. We generated and analysed a chemical-biology-whole-genome data set to predict new targets for antibacterial combinations with trimethoprim and sulfamethoxazole. For this we used a large transposon mutant library in Escherichia coli BW25113 where an outward-transcribing inducible promoter was engineered into one end of the transposon. This approach allows regulated expression of adjacent genes in addition to gene inactivation at transposon insertion sites, a methodology that has been called TraDIS-Xpress. These chemical genomic data sets identified mechanisms for both reduced and increased susceptibility to trimethoprim and sulfamethoxazole. The data identified that over-expression of FolA reduced trimethoprim susceptibility, a known mechanism for reduced susceptibility. In addition, transposon insertions into the genes tdk, deoR, ybbC, hha, ldcA, wbbK and waaS increased susceptibility to trimethoprim and likewise for rsmH, fadR, ddlB, nlpI and prc with sulfamethoxazole, while insertions in ispD, uspC, minC, minD, yebK, truD and umpG increased susceptibility to both these antibiotics. Two of these genes’ products, Tdk and IspD, are inhibited by AZT and fosmidomycin respectively, antibiotics that are known to synergise with trimethoprim. Thus, the data identified two known targets and several new target candidates for the development of co-drugs that synergise with trimethoprim, sulfamethoxazole or cotrimoxazole. We demonstrate that the TraDIS-Xpress technology can be used to generate information-rich chemical-genomic data sets that can be used for antibacterial development.
Collapse
Affiliation(s)
- Arthur K Turner
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Sarah Bastkowski
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Andrea Telatin
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Andrew Page
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Mark Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Ian Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
13
|
Ortiz-Padilla M, Portillo-Calderón I, Maldonado N, Rodríguez-Martínez J, de Gregorio-Iaria B, Merino-Bohórquez V, Rodríguez-Baño J, Pascual Á, Docobo-Pérez F. Role of inorganic phosphate concentrations in in vitro activity of fosfomycin. Clin Microbiol Infect 2021; 28:302.e1-302.e4. [PMID: 34634457 DOI: 10.1016/j.cmi.2021.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The objective of this study was to evaluate the in vitro activity of fosfomycin under different physiological concentrations of inorganic phosphate (Pi). METHODS The wild-type BW25113 strain, four isogenic mutants (ΔglpT, ΔuhpT, ΔglpT-uhpT, and ΔphoB) and six clinical isolates of Escherichia coli with different fosfomycin susceptibilities were used. EUCAST breakpoints were used. Susceptibility was evaluated by agar dilution using standard Mueller-Hinton agar (Pi concentration of 1 mM similar to human plasma concentration) and supplemented with Pi (13 and 42 mM, minimum and maximum urinary Pi concentrations) and/or glucose-6-phosphate (25 mg/L). Fosfomycin transporter promoter activity was assayed using PglpT::gfpmut2 or PuhpT::gfpmut2 promoter fusions in standard Mueller-Hinton Broth (MHB), supplemented with Pi (13 or 42 mM) ± glucose-6-phosphate. Fosfomycin activity was quantified, estimating fosfomycin EC50 under different Pi concentrations (1, 13 and 42 mM + glucose-6-phosphate) and in time-kill assays using fosfomycin concentrations of 307 (maximum plasma concentration (Cmax)), 1053 and 4415 mg/L (urine Cmax range), using MHB with 28 mM Pi (mean urine Pi concentration) + 25 mg/L glucose-6-phosphate. RESULTS All the strains showed decreased susceptibility to fosfomycin linked to increased Pi concentrations: 1-4 log2 dilution differences from 1 to 13 mM, and 1-8 log2 dilution differences at 42 mM Pi. Changes in phosphate concentration did not affect the expression of fosfomycin transporters. By increasing Pi concentrations higher fosfomycin EC50 bacterial viability was observed, except against ΔglpT-uhpT. The increase in Pi reduced the bactericidal effect of fosfomycin. DISCUSSION Pi variations in physiological fluids may reduce fosfomycin activity against E. coli. Elevated Pi concentrations in urine may explain oral fosfomycin failure in non-wild-type but fosfomycin-susceptible E. coli strains.
Collapse
Affiliation(s)
- Miriam Ortiz-Padilla
- Unidad de Gestión Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Seville, Spain; Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - Inés Portillo-Calderón
- Unidad de Gestión Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Seville, Spain; Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - Natalia Maldonado
- Unidad de Gestión Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Seville, Spain; Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Rodríguez-Martínez
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
| | - Belén de Gregorio-Iaria
- Unidad de Gestión Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Vicente Merino-Bohórquez
- Unidad de Gestión de Farmacia Hospitalaria, Hospital Universitario Virgen Macarena, Seville, Spain; Departamento de Farmacología, Universidad de Sevilla, Spain
| | - Jesús Rodríguez-Baño
- Unidad de Gestión Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Seville, Spain; Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain; Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Álvaro Pascual
- Unidad de Gestión Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Seville, Spain; Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
| | - Fernando Docobo-Pérez
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
14
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
15
|
Coward C, Dharmalingham G, Abdulle O, Avis T, Beisken S, Breidenstein E, Carli N, Figueiredo L, Jones D, Khan N, Malara S, Martins J, Nagalingam N, Turner K, Wain J, Williams D, Powell D, Mason C. High-density transposon libraries utilising outward-oriented promoters identify mechanisms of action and resistance to antimicrobials. FEMS Microbiol Lett 2020; 367:fnaa185. [PMID: 33186989 PMCID: PMC7735965 DOI: 10.1093/femsle/fnaa185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/11/2020] [Indexed: 01/07/2023] Open
Abstract
The use of bacterial transposon mutant libraries in phenotypic screens is a well-established technique for determining which genes are essential or advantageous for growth in conditions of interest. Standard, inactivating, transposon libraries cannot give direct information about genes whose over-expression gives a selective advantage. We report the development of a system wherein outward-oriented promoters are included in mini-transposons, generation of transposon mutant libraries in Escherichia coli and Pseudomonas aeruginosa and their use to probe genes important for growth under selection with the antimicrobial fosfomycin, and a recently-developed leucyl-tRNA synthase inhibitor. In addition to the identification of known mechanisms of action and resistance, we identify the carbon-phosphorous lyase complex as a potential resistance liability for fosfomycin in E. coli and P. aeruginosa. The use of this technology can facilitate the development of novel mechanism-of-action antimicrobials that are urgently required to combat the increasing threat worldwide from antimicrobial-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Chris Coward
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Gopujara Dharmalingham
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Omar Abdulle
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Tim Avis
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Stephan Beisken
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Elena Breidenstein
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Natasha Carli
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Luis Figueiredo
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - David Jones
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Nawaz Khan
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Sara Malara
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Joana Martins
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Nabeetha Nagalingam
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Keith Turner
- Quadram Institute, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - John Wain
- Quadram Institute, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - David Williams
- Nanna Therapeutics, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - David Powell
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Clive Mason
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| |
Collapse
|
16
|
Detection of Low-Level Fosfomycin-Resistant Variants by Decreasing Glucose-6-Phosphate Concentration in Fosfomycin Susceptibility Determination. Antibiotics (Basel) 2020; 9:antibiotics9110802. [PMID: 33198311 PMCID: PMC7698254 DOI: 10.3390/antibiotics9110802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
Mutations that confer low-level fosfomycin resistance (LLFR) but not clinical resistance in Escherichia coli are increasingly reported. LLFR strains can become clinically resistant under urinary tract physiological conditions or may act as gateways for highly resistant subpopulations by the selection of additional LLFR mutations. Nevertheless, most LLFR strains are impossible to detect under routine fosfomycin susceptibility determinations. Here, we have explored the possibility of detecting LLFR variants by reducing glucose-6-phosphate (G6P) concentration in fosfomycin susceptibility testing for E. coli strains. As a proof of concept, fosfomycin minimal inhibitory concentrations (MICs) and disk diffusion susceptibility tests were performed for E. coli strain BW25113 and 10 isogenic derivatives carrying the most prevalent LLFR chromosomal mutations (∆uhpT, ∆glpT, ∆cyaA, and ∆ptsI) and their double combinations. Whereas standard G6P concentrations detected only ∆uhpT single and double variants, assays with reduced G6P detected all LLFR variants. In addition, G6P levels were determined to be ≤5 µg/mL in urine samples from 30 patients with urinary tract infection (UTI) caused by E. coli and 10 healthy volunteers, suggesting that most bacterial cells in uncomplicated UTIs are facing fosfomycin under low G6P concentration. Reducing G6P allows for the detection of LLFR variants, which may suppose a risk for future resistance development, especially in UTIs.
Collapse
|