1
|
Dang Z, Yang B, Xia P, Huang J, Liao J, Li Y, Tang S, Han Q, Luo S, Xia Y. Antimicrobial susceptibilities, resistance mechanisms and molecular characteristics of toxigenic Clostridioides difficile isolates in a large teaching hospital in Chongqing, China. J Glob Antimicrob Resist 2024; 38:198-204. [PMID: 39048055 DOI: 10.1016/j.jgar.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES Clostridioides difficile ranks among the primary sources of healthcare-related infections and diarrhoea in numerous nations. We evaluated the drug susceptibility and resistance mechanisms of C. difficile isolates from a hospital in Chongqing, China, and identified resistance rates and resistance mechanisms that differed from previous findings. METHODS The toxin genes and drug resistance genes of clinical strains were detected using Polymerase Chain Reaction (PCR), and these strains were subjected to Multilocus Sequence Typing (MLST). The agar dilution technique was employed for assessing susceptibility of antibiotics. Clinical data collection was completed through a review of electronic medical records. RESULTS A total of 67 strains of toxin-producing C. difficile were detected. All C. difficile isolates demonstrated susceptibility to both metronidazole and vancomycin. However, resistance was observed in 8.95%, 16.42%, 56.72%, 56.72%, 31.34% and 5.97% of the isolates for tigecycline, tetracycline, clindamycin, erythromycin, moxifloxacin and rifampin, respectively. Among the strains with toxin genotypes A + B + CDT - and belonging to the ST3, six strains exhibited reduced susceptibility to tigecycline (MIC=0.5mg/L) and tetracycline (MIC=8mg/L). The tetA(P) and tetB(P) genes were present in these six strains, but were absent in tetracycline-resistant strains. Resistance genes (ermB, tetM, tetA(P) and tetB(P)) and mutations (in gyrA, gyrB, and rpoB) were identified in resistant strains. CONCLUSIONS In contrast to prior studies, we found higher proportions of ST3 isolates with decreased tigecycline sensitivity, sharing similar resistance patterns and resistance genes. In the resistance process of tigecycline and tetracycline, the tetA(P) and tetB(P) genes may play a weak role.
Collapse
Affiliation(s)
- Zijun Dang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bingxue Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peiwen Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzhu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiajia Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqiong Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiyu Tang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Han
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengli Luo
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Frost JM, Lee J, Hsieh PH, Lin SJH, Min Y, Bauer M, Runkel AM, Cho HT, Hsieh TF, Fischer RL, Choi Y. H2A.X promotes endosperm-specific DNA methylation in Arabidopsis thaliana. BMC PLANT BIOLOGY 2023; 23:585. [PMID: 37993808 PMCID: PMC10664615 DOI: 10.1186/s12870-023-04596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND H2A.X is an H2A variant histone in eukaryotes, unique for its ability to respond to DNA damage, initiating the DNA repair pathway. H2A.X replacement within the histone octamer is mediated by the FAcilitates Chromatin Transactions (FACT) complex, a key chromatin remodeler. FACT is required for DEMETER (DME)-mediated DNA demethylation at certain loci in Arabidopsis thaliana female gametophytes during reproduction. Here, we sought to investigate whether H2A.X is involved in DME- and FACT-mediated DNA demethylation during reproduction. RESULTS H2A.X is encoded by two genes in Arabidopsis genome, HTA3 and HTA5. We generated h2a.x double mutants, which displayed a normal growth profile, whereby flowering time, seed development, and root tip organization, S-phase progression and proliferation were all normal. However, h2a.x mutants were more sensitive to genotoxic stress, consistent with previous reports. H2A.X fused to Green Fluorescent Protein (GFP) under the H2A.X promoter was highly expressed especially in newly developing Arabidopsis tissues, including in male and female gametophytes, where DME is also expressed. We examined DNA methylation in h2a.x developing seeds and seedlings using whole genome bisulfite sequencing, and found that CG DNA methylation is decreased genome-wide in h2a.x mutant endosperm. Hypomethylation was most striking in transposon bodies, and occurred on both parental alleles in the developing endosperm, but not the embryo or seedling. h2a.x-mediated hypomethylated sites overlapped DME targets, but also included other loci, predominately located in heterochromatic transposons and intergenic DNA. CONCLUSIONS Our genome-wide methylation analyses suggest that H2A.X could function in preventing access of the DME demethylase to non-canonical sites. Overall, our data suggest that H2A.X is required to maintain DNA methylation homeostasis in the unique chromatin environment of the Arabidopsis endosperm.
Collapse
Affiliation(s)
- Jennifer M Frost
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
- Present Address: Genomics and Child Health, Queen Mary University of London, London, UK.
| | - Jaehoon Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
| | - Ping-Hung Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Present Address: DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Samuel J H Lin
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Yunsook Min
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Matthew Bauer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Anne M Runkel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Robert L Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea.
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea.
| |
Collapse
|
3
|
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, Ai H, Zhao Y. Recent advances in nanoantibiotics against multidrug-resistant bacteria. NANOSCALE ADVANCES 2023; 5:6278-6317. [PMID: 38024316 PMCID: PMC10662204 DOI: 10.1039/d3na00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant (MDR) bacteria-caused infections have been a major threat to human health. The abuse of conventional antibiotics accelerates the generation of MDR bacteria and makes the situation worse. The emergence of nanomaterials holds great promise for solving this tricky problem due to their multiple antibacterial mechanisms, tunable antibacterial spectra, and low probabilities of inducing drug resistance. In this review, we summarize the mechanism of the generation of drug resistance, and introduce the recently developed nanomaterials for dealing with MDR bacteria via various antibacterial mechanisms. Considering that biosafety and mass production are the major bottlenecks hurdling the commercialization of nanoantibiotics, we introduce the related development in these two aspects. We discuss urgent challenges in this field and future perspectives to promote the development and translation of nanoantibiotics as alternatives against MDR pathogens to traditional antibiotics-based approaches.
Collapse
Affiliation(s)
- Mulan Li
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Xiaojie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Cannano Tefei Technology, Co. LTD Room 1013, Building D, No. 136 Kaiyuan Avenue, Huangpu District Guangzhou Guangdong Province 510535 P. R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Yuliang Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
4
|
Chen T, Zhao MX, Tang XY, Wei WX, Wen X, Zhou SZ, Ma BH, Zou YD, Zhang N, Mi JD, Wang Y, Liao XD, Wu YB. The tigecycline resistance gene tetX has an expensive fitness cost based on increased outer membrane permeability and metabolic burden in Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131889. [PMID: 37348375 DOI: 10.1016/j.jhazmat.2023.131889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Livestock-derived tetX-positive Escherichia coli with tigecycline resistance poses a serious risk to public health. Fitness costs, antibiotic residues, and other tetracycline resistance genes (TRGs) are fundamental in determining the spread of tetX in the environment, but there is a lack of relevant studies. The results of this study showed that both tetO and tetX resulted in reduction in growth and an increased in the metabolic burden of E. coli, but the presence of doxycycline reversed this phenomenon. Moreover, the protection of E. coli growth and metabolism by tetO was superior to that of tetX in the presence of doxycycline, resulting in a much lower competitiveness of tetX-carrying E. coli than tetO-carrying E. coli. The results of RNA-seq showed that the increase in outer membrane proteins (ompC, ompF and ompT) of tetX-carrying E. coli resulted in increased membrane permeability and biofilm formation, which is an important reason for fitness costs. Overall, the increased membrane permeability and metabolic burden of E. coli is the mechanistic basis for the high fitness cost of tetX, and the spread of tetO may limit the spread of tetX. This study provides new insights into the rational use of tetracycline antibiotics to control the spread of tetX.
Collapse
Affiliation(s)
- Tao Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Min-Xing Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Yue Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Xiao Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shi-Zheng Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Bao-Hua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yong-De Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Na Zhang
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Jian-Dui Mi
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Di Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yin-Bao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Abstract
The use and misuse of antibiotics have resulted in the selection of difficult-to-treat resistant bacteria. Two key parameters that influence the selection of resistant bacteria are the minimal selective concentration (MSC) and the fitness cost of resistance, both of which have been measured during planktonic growth in several studies. However, bacterial growth most often occurs in biofilms, and it is unclear if and how these parameters differ under these two growth conditions. To address this knowledge gap, we compared a selection of several types of antibiotic-resistant Escherichia coli mutants during planktonic and biofilm growth to determine the fitness costs and MSCs. Biofilm-forming Escherichia coli strains are commonly found in catheter-associated and recurrent urinary tract infections. Isogenic strains of a biofilm-forming E. coli strain, differing only in the resistance mechanisms and the fluorescent markers, were constructed, and susceptible and resistant bacteria were grown in head-to-head competitions at various concentrations of antibiotics under planktonic and biofilm conditions. Mutants with resistance to five different antibiotics were studied. The results show that during both planktonic and biofilm growth, selection for the resistant mutants occurred for all antibiotics at sub-MICs far below the MIC of the antibiotic. Even though differences were seen, the MSC values and the fitness costs did not differ systematically between planktonic and biofilm growth, implying that despite the different growth modes, the basic selection parameters are similar. These findings highlight the risk that resistant mutants may, similarly to planktonic growth, also be selected at sub-MICs of antibiotics in biofilms.
Collapse
|