1
|
Mokrani D, Luyt CE. Effective strategies for managing trimethoprim-sulfamethoxazole and levofloxacin-resistant Stenotrophomonas maltophilia infections: bridging the gap between scientific evidence and clinical practice. Curr Opin Infect Dis 2024; 37:554-564. [PMID: 39082087 DOI: 10.1097/qco.0000000000001039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
PURPOSE OF REVIEW To discuss the therapeutic options available for the management of difficult-to-treat strains of Stenotrophomonas maltophilia ( Sma ), namely those resistant to trimethoprim-sulfamethoxazole and fluoroquinolones. RECENT FINDINGS Recent pharmacological studies have highlighted the fact that current breakpoints for first-line antibiotics against Sma are too high. In light of these data, it is likely that the prevalence of difficult-to-treat (DTR) Sma is underestimated worldwide. Two promising alternatives for treating DTR strains are cefiderocol and the combination of aztreonam and an L2 inhibitor. However, clinical trials are currently very limited for these antibiotics and no comparative studies have been carried out to date. It is important to note that the clinical efficacy of cefiderocol appears to be inferior to that initially anticipated from in-vitro and animal studies. Consequently, minocycline and ceftazidime may remain viable options if they are used against strains with a low minimum inhibitory concentration. We advise against the use of intravenous polymyxins and tigecycline. Finally, recent literature does not support the systematic use of combination therapy or long-course treatments. In the coming years, phage therapy may become a promising approach against DTR Sma infections. SUMMARY Overall, clinical comparative studies focused on DTR strains are required in order to provide more accurate and actionable information for therapeutic decisions.
Collapse
Affiliation(s)
- David Mokrani
- Médecine Intensive Réanimation, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière
| | - Charles-Edouard Luyt
- Médecine Intensive Réanimation, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière
- Sorbonne Université, INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| |
Collapse
|
2
|
Bakthavatchalam YD, Manoharan Y, Shankar A, Gunasekaran K, Walia K, Veeraraghavan B. Understanding the rationale and clinical impact of the revised CLSI 2024 minocycline susceptibility breakpoints against Stenotrophomonas maltophilia. Eur J Clin Microbiol Infect Dis 2024; 43:2453-2457. [PMID: 39297907 DOI: 10.1007/s10096-024-04932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
Stenotrophomonas maltophilia is challenging to treat due to the presence of multiple intrinsic and acquired resistance mechanisms. TMP-SMZ is the standard care of therapy for treating S. maltophilia infections; levofloxavin and minocycline are the preferred potential alternatives. Recently, in 2024, CLSI has lowered the susceptibility breakpoints for minocycline against S. maltophilia. Applying the revised minocycline's susceptibility breakpoint of ≤ 1 mg/L, susceptibility to minocycline dropped significantly from 77% (previous breakpoint, ≤ 4 mg/L) to 35% (revised breakpoint of ≤ 1 mg/L). In the wake of this change, minocycline's dependency has been questioned for treating S. maltophilia infections.
Collapse
Affiliation(s)
| | - Yuvashri Manoharan
- Department of Clinical Microbiology, Christian Medical College, Vellore, 632004, India
| | - Abirami Shankar
- Department of Medicine, Christian Medical College, Vellore, India
| | - Karthik Gunasekaran
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Kamini Walia
- Department of Clinical Microbiology, Christian Medical College, Vellore, 632004, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, 632004, India.
| |
Collapse
|
3
|
Gill EL, Gill CM, McEvoy C. Validation of a Stenotrophomonas maltophilia bloodstream infection prediction score in the hematologic malignancy population. Ann Hematol 2024; 103:1745-1752. [PMID: 38453704 PMCID: PMC11009769 DOI: 10.1007/s00277-024-05686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Stenotrophomonas maltophilia (SM) bloodstream infections (BSIs) contribute to significant mortality in hematologic malignancy (HM) and hematopoietic stem cell transplantation (HSCT) patients. A risk score to predict SM BSI could reduce time to appropriate antimicrobial therapy (TTAT) and improve patient outcomes. A single center cohort study of hospitalized adults with HM/HSCT was conducted. Patients had ≥ 1 blood culture with a Gram-negative (GN) organism. A StenoSCORE was calculated for each patient. The StenoSCORE2 was developed using risk factors for SM BSI identified via logistic regression. Receiver operating characteristic (ROC) curves were plotted. Sensitivity and specificity for the StenoSCORE and StenoSCORE2 were calculated. Thirty-six SM patients and 534 non-SM patients were assessed. A StenoSCORE ≥ 33 points was 80% sensitive, 68% specific, and accurately classified 69% of GN BSIs. StenoSCORE2 variables included acute leukemia, prolonged neutropenia, mucositis, ICU admission, recent meropenem and/or cefepime exposure. The StenoSCORE2 performed better than the StenoSCORE (ROC AUC 0.84 vs. 0.77). A StenoSCORE2 ≥ 4 points was 86% sensitive, 76% specific, and accurately classified 77% of GN BSIs. TTAT was significantly longer for patients with SM BSI compared with non-SM BSI (45.16 h vs. 0.57 h; p < 0.0001). In-hospital and 28-day mortality were significantly higher for patients with SM BSI compared to non-SM BSI (58.3% vs. 18.5% and 66.7% vs. 26.4%; p-value < 0.0001). The StenoSCORE and StenoSCORE2 performed well in predicting SM BSIs in patients with HM/HSCT and GN BSI. Clinical studies evaluating whether StenoSCORE and/or StenoSCORE2 implementation improves TTAT and clinical outcomes are warranted.
Collapse
Affiliation(s)
- Emily L Gill
- Department of Pharmacy, Barnes Jewish Hospital, 216 S. Kingshighway Blvd, Mailstop 90-52-41, Saint Louis, MO, 63110, USA.
| | - Christian M Gill
- Department of Pharmacy, SSM-Health St. Louis University Hospital, Saint Louis, MO, USA
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Colleen McEvoy
- Division of Pulmonary and Critical Care, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
4
|
Lee YL, Hsueh PR. Emerging infections in vulnerable hosts: Stenotrophomonas maltophilia and Elizabethkingia anophelis. Curr Opin Infect Dis 2023; 36:481-494. [PMID: 37548375 DOI: 10.1097/qco.0000000000000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE OF REVIEW This systematic review aimed to explore the recent trends in the epidemiology, risk factors, and antimicrobial susceptibility of two emerging opportunistic pathogens, Stenotrophomonas maltophilia and Elizabethkingia anophelis . RECENT FINDINGS Since 2020, numerous outbreaks of S. maltophilia and E. anophelis have been reported worldwide. Most of these outbreaks have been associated with healthcare facilities, although one outbreak caused by E. anophelis in France was considered a community-associated infection. In terms of antimicrobial susceptibility, trimethoprim/sulfamethoxazole (TMP-SMZ), levofloxacin, and minocycline have exhibited good efficacy against S. maltophilia . Additionally, cefiderocol and a combination of aztreonam and avibactam have shown promising results in in vitro susceptibility testing. For E. anophelis , there is currently no consensus on the optimal treatment. Although some studies have reported good efficacy with rifampin, TMP-SMZ, piperacillin/tazobactam, and cefoperazone/sulbactam, minocycline had the most favourable in vitro susceptibility rates. Cefiderocol may serve as an alternative due to its low minimum inhibitory concentration (MIC) against E. anophelis . The role of vancomycin in treatment is still uncertain, although several successful cases with vancomycin treatment, even with high MIC values, have been reported. SUMMARY Immunocompromised patients are particularly vulnerable to infections caused by S. maltophilia and E. anophelis , but the optimal treatment strategy remains inconclusive. Further research is necessary to determine the most effective use of conventional and novel antimicrobial agents in combatting these multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Yu-Lin Lee
- Department of Internal Medicine, Chung Shan Medical University Hospital
- School of Medicine, Chung Shan Medical University
- PhD Program in Medical Biotechnology, National Chung-Hsing University
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital
- School of Medicine
- PhD Program for Aging, School of Medicine, China Medical University, Taichung
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
5
|
Rai S, Dash D, Agarwal N. Introducing the new face of CLSI M100 in 2023: An explanatory review. Indian J Med Microbiol 2023; 46:100432. [PMID: 37945125 DOI: 10.1016/j.ijmmb.2023.100432] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The CLSI annual update of its M100 document is eagerly awaited every year. This year's update, the M100-Ed33, was published in February, and will significantly affect clinical practices. OBJECTIVE To highlight and explain the rationale of the changes and their clinical impact. CONTENT The major changes this year are mostly focused on PK/PD data, selective and cascade reporting of the antibiotics and therapy related comments. The CLSI has moved away from its classical grouping of antibiotics (A, B, U, O) to a tier-based approach (Tier 1, 2, 3, 4) which will aid in cascade reporting during an antibiotic susceptibility testing (AST). Rather than non-fastidious, fastidious and anaerobe grouping, the tables have been made organism specific. The aminoglycosides breakpoints have been changed for both Enterobacterales and Pseudomonas aeruginosa while for P. aeruginosa, the breakpoints of piperacillin - tazobactam (TZP) are also updated. These updates are mostly based on attainment of drug plasma level for bacterial stasis rather than bactericidal effect of the antibiotics. It is noteworthy, that these breakpoint changes are made, keeping in view that the aminoglycosides for all organisms should be used in combination therapy. For P. aeruginosa, gentamicin has been removed, while amikacin has been restricted for urinary isolates only.
Collapse
Affiliation(s)
- Sumit Rai
- Department of Clinical Microbiology, AIIMS Mangalagiri, Guntur, India.
| | - Debabrata Dash
- Department of Clinical Microbiology, AIIMS Mangalagiri, Guntur, India.
| | - Nidhima Agarwal
- Department of Clinical Microbiology, AIIMS Mangalagiri, Guntur, India.
| |
Collapse
|
6
|
Kunz Coyne AJ, Herbin S, Caniff K, Rybak MJ. Steno-sphere: Navigating the enigmatic world of emerging multidrug-resistant Stenotrophomonas maltophilia. Pharmacotherapy 2023; 43:833-846. [PMID: 37199104 DOI: 10.1002/phar.2828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/19/2023]
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen and frequent cause of serious nosocomial infections. Patient populations at greatest risk for these infections include the immunocompromised and those with chronic respiratory illnesses and prior antibiotic exposure, notably to carbapenems. Its complex virulence and resistance profile drastically limit available antibiotics, and incomplete breakpoint and pharmacokinetic/pharmacodynamic (PK/PD) data to inform dose optimization further complicates therapeutic approaches. Clinical comparison data of first-line agents, including trimethoprim-sulfamethoxazole (TMP-SMX), quinolones, and minocycline, are limited to conflicting observational data with no clear benefit of a single agent or combination therapy. Newer antibiotic approaches, including cefiderocol and aztreonam- avibactam, are promising alternatives for extensively drug-resistant isolates; however, clinical outcomes data are needed. The potential clinical utility of bacteriophage for compassionate use in treating S. maltophilia infections remains to be determined since data is limited to in-vitro and sparse in-vivo work. This article provides a review of available literature for S. maltophilia infection management focused on related epidemiology, resistance mechanisms, identification, susceptibility testing, antimicrobial PK/PD, and emerging therapeutic strategies.
Collapse
Affiliation(s)
- Ashlan J Kunz Coyne
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | | | - Kaylee Caniff
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit, Michigan, USA
| |
Collapse
|
7
|
Gill CM, Nicolau DP. In Vivo Pharmacodynamic Profile of EVER206, a Novel Polymyxin Antimicrobial, against Gram-Negative Bacteria in the Murine Thigh Infection Model. Antimicrob Agents Chemother 2023; 67:e0173822. [PMID: 37022170 PMCID: PMC10190685 DOI: 10.1128/aac.01738-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
The objective was to determine the magnitude of the EVER206 free-plasma area under the concentration time curve (fAUC)/MIC target associated with bacteriostasis and 1-log10 kill against clinically relevant Gram-negative bacteria in the murine thigh model. Twenty-seven clinical isolates (Pseudomonas aeruginosa, n = 10; Escherichia coli, n = 9; Klebsiella pneumoniae, n = 5; Enterobacter cloacae, n = 2; and Klebsiella aerogenes, n = 1) were tested. Mice were pretreated with cyclophosphamide (induce neutropenia) and uranyl nitrate (increase the exposure of test compound through predictable renal dysfunction). Two hours postinoculation, five doses of EVER206 were administered subcutaneously. EVER206 pharmacokinetics were determined in infected mice. Data were fit using maximum effect (Emax) models to elucidate the fAUC/MIC targets for stasis and 1-log10 bacterial kill (reported as mean [range] by species). EVER206 MICs (mg/L) ranged from 0.25 to 2 mg/L (P. aeruginosa), 0.06 to 2 mg/L (E. coli), 0.06 to 0.125 mg/L (E. cloacae), 0.06 mg/L (K. aerogenes), and 0.06 to 2 mg/L (K. pneumoniae). In vivo, the mean 0-h baseline bacterial burden was 5.57 ± 0.39 log10 CFU/thigh. Stasis was achieved in 9/10 P. aeruginosa (fAUC/MIC, 88.13 [50.33 to 129.74]), 9/9 E. coli (fAUC/MIC, 112.84 [19.19 to 279.38]), 2/2 E. cloacae (fAUC/MIC, 259.28 [124.08 to 394.47]), 0/1 K. aerogenes, and 4/5 K. pneumoniae (fAUC/MIC, 99.26 [62.3 to 144.43]) isolates tested. 1-log10 kill was achieved in 9/10 for P. aeruginosa (fAUC/MIC, 106.43 [55.22 to 152.08]), 3/9 for E. coli (fAUC/MIC, 258.96 [74.08 to 559.4]), and 1/2 for E. cloacae (fAUC/MIC, 255.33). Using the murine thigh model, the fAUC/MIC targets of EVER206 were assessed across a broad MIC distribution. Integrating these data with microbiologic and clinical exposure data will aid in determining the clinical dose of EVER206.
Collapse
Affiliation(s)
- Christian M. Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - David P. Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
8
|
Efficacy of Cefiderocol in Experimental Stenotrophomonas maltophilia Pneumonia in Persistently Neutropenic Rabbits. Antimicrob Agents Chemother 2022; 66:e0061822. [PMID: 36154614 PMCID: PMC9578435 DOI: 10.1128/aac.00618-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Stenotrophomonas maltophilia is an important cause of pneumonia in immunocompromised patients. Cefiderocol is a parenteral siderophore cephalosporin with potent in vitro activity against S. maltophilia. We evaluated the efficacy of cefiderocol in a neutropenic rabbit model of S. maltophilia pneumonia in comparison to trimethoprim-sulfamethoxazole (TMP-SMX). The cefiderocol area under the plasma drug concentration-time curve extrapolated to 8 h (AUC0–8) was lower (423.0 ± 40.9 μg·h/mL versus 713.6 ± 40.1 μg·h/mL) and clearance higher (252.77 ± 38.9 mL/h/kg versus 142.6 ± 32.9 mL/h/kg) in infected versus noninfected rabbits. We studied a clinical bloodstream S. maltophilia isolate with an MIC of 0.03 μg/mL of cefiderocol. Time spent above the MIC of cefiderocol for the majority of S. maltophilia isolates in rabbits recapitulated the plasma concentration-time profile observed in adult humans at the licensed dose of 2 g given intravenously (i.v.). Experimental groups consisted of 120 mg/kg cefiderocol i.v. every 8 hours (q8h); TMP-SMX, 5 mg/kg i.v. Q12h, and untreated controls (UCs). Treatment was administered for 10 days. Survival in cefiderocol-treated rabbits (87%) was greater than that in TMP-SMX-treated (25%; P < 0.05) and UC (0%; P < 0.05) groups. There was no residual bacterial burden in lung tissue or bronchoalveolar lavage (BAL) fluid in the cefiderocol group. Residual bacterial burden was present in lung tissue and BAL fluid in the TMP-SMX group but was decreased in comparison to UCs (P < 0.001). Lung weights (markers of pulmonary injury) were decreased in cefiderocol-treated versus TMP-SMX (P < 0.001) and UC (P < 0.001) groups. Cefiderocol is highly active in treatment of experimental S. maltophilia pneumonia, laying the foundation for future clinical investigations against this lethal infection in immunocompromised patients.
Collapse
|
9
|
Lasko MJ, Tabor-Rennie JL, Nicolau DP, Kuti JL. Trimethoprim/sulfamethoxazole pharmacodynamics against Stenotrophomonas maltophilia in the in vitro chemostat model. J Antimicrob Chemother 2022; 77:3187-3193. [PMID: 36101486 DOI: 10.1093/jac/dkac304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Trimethoprim/sulfamethoxazole has historically been the treatment of choice for infection caused by Stenotrophomonas maltophilia. This study sought to define the pharmacodynamic indices and magnitude of exposure required for stasis and 1 log10 cfu reductions. METHODS Pharmacodynamic studies were conducted using the in vitro chemostat model over 24 h against three trimethoprim/sulfamethoxazole-susceptible S. maltophilia isolates with MICs from 0.25/4.75 to 2/38 mg/L. The primary endpoint was the change in cfu at 24 h relative to baseline. The log ratio of the area under the cfu curve (LR AUcfu) was a secondary endpoint. Trimethoprim and sulfamethoxazole exposures required for stasis and 1 log10 cfu/mL reduction were determined. RESULTS Trimethoprim/sulfamethoxazole exposures achieved stasis and 1 log10 cfu/mL reductions in 9/16 (56%) and 2/16 (13%) of experiments. Both the fAUC/MIC and fCmax/MIC were identified as equivalent pharmacodynamic drivers, with stasis achieved at an fAUC/MIC of 67.4 and 30.0 for trimethoprim and sulfamethoxazole, respectively. Clinically meaningful exposures required to achieve 1 log10 cfu/mL reductions were not quantifiable. The LR AUcfu analysis supported the lack of overall bacterial burden reduction against S. maltophilia. CONCLUSIONS In this in vitro chemostat model, trimethoprim/sulfamethoxazole monotherapy, even at higher doses, achieved limited activity against susceptible S. maltophilia.
Collapse
Affiliation(s)
- Maxwell J Lasko
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | | | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
10
|
Zhao J, Huang Y, Li J, Zhang B, Dong Z, Wang D. In vitro Antibacterial Activity and Resistance Prevention of Antimicrobial Combinations for Dihydropteroate Synthase-Carrying Stenotrophomonas maltophilia. Infect Drug Resist 2022; 15:3039-3046. [PMID: 35720255 PMCID: PMC9205434 DOI: 10.2147/idr.s368338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background Stenotrophomonas maltophilia (S. maltophilia) is a multidrug-resistant gram-negative bacillus that is known to be an opportunistic pathogen, particularly in a hospital environment. The infection has a high morbidity and mortality. Sulfamethoxazole-trimethoprim (SXT) is the first-line agent recommended for its treatment. The global spread of dihydropteroate synthase (sul) genes has resulted in an increased resistance rate. However, the appropriate therapy for infections caused by sul-carrying S. maltophilia has not yet been established. Objective Our study aimed to identify the optimal antibiotic combinations that could both show high antibacterial activity against sul-carrying S. maltophilia and the ability to prevent the emergence of resistance at clinical dosage regimens. Methods Time-killing experiments and mutant prevention concentration (MPC) experiments were conducted to evaluate the antibacterial effect and ability to prevent resistance to minocycline, tigecycline, moxifloxacin, and ticarcillin/clavulanic acid (T/K), both alone and in combination, at clinically relevant antimicrobial concentrations. Results Minocycline, tigecycline, and T/K all exhibited bacteriostatic activity to sul-carrying S. maltophilia. The combination of minocycline plus T/K and tigecycline plus T/K neither enhanced the bactericidal ability nor prevented drug-resistant mutations. Moxifloxacin, at 2 mg/L, showed good bactericidal activity to most S. maltophilia, but bacterial regrowth at 24 h was observed in two strains. When combined with T/K, moxifloxacin showed good bactericidal activity in all moxifloxacin-sensitive strains. The concentrations of moxifloxacin alone were lower than most MPCs of the tested sul-carrying strains. When combined with T/K, the mean steady-state concentrations (MSC) of moxifloxacin could prevent 70% of resistance, and the peak concentration (Cmax) prevented 95% of resistance. Conclusion The combination of moxifloxacin and T/K can achieve a good in vitro bactericidal effect and prevent the emergence of resistance at clinical dosage regimens, and may be an optimal therapeutic strategy for S. maltophilia infections, especially for vulnerable immunocompromised and critically ill patients.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Pulmonary and Critical Care Medicine, Air Force Medical Center, PLA, Beijing, 100142, People's Republic of China
| | - Yan Huang
- Department of Pulmonary and Critical Care Medicine, Air Force Medical Center, PLA, Beijing, 100142, People's Republic of China
| | - Jian Li
- Department of Pulmonary and Critical Care Medicine, Air Force Medical Center, PLA, Beijing, 100142, People's Republic of China
| | - Bo Zhang
- Department of Pulmonary and Critical Care Medicine, Air Force Medical Center, PLA, Beijing, 100142, People's Republic of China
| | - Zhiwei Dong
- Department of General Surgery, Air Force Medical Center, PLA, Beijing, 100142, People's Republic of China
| | - Dong Wang
- Department of Pulmonary and Critical Care Medicine, Air Force Medical Center, PLA, Beijing, 100142, People's Republic of China
| |
Collapse
|