1
|
Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. Pathogens 2021; 10:pathogens10111397. [PMID: 34832553 PMCID: PMC8621652 DOI: 10.3390/pathogens10111397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2629-1846
| | - Yeseren Kayacan
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bart Devreese
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Microbiology, Gent University (UGent), 9000 Gent, Belgium
| |
Collapse
|
2
|
Mixão V, Hansen AP, Saus E, Boekhout T, Lass-Florl C, Gabaldón T. Whole-Genome Sequencing of the Opportunistic Yeast Pathogen Candida inconspicua Uncovers Its Hybrid Origin. Front Genet 2019; 10:383. [PMID: 31105748 PMCID: PMC6494940 DOI: 10.3389/fgene.2019.00383] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/09/2019] [Indexed: 12/02/2022] Open
Abstract
Fungal infections such as those caused by Candida species are increasingly common complications in immunocompromised patients. The list of causative agents of candidiasis is growing and comprises a set of emerging species whose relative global incidence is rare but recurrent. This is the case of Candida inconspicua, which prevalence has increased 10-fold over the last years. To gain novel insights into the emergence of this opportunistic pathogen and its genetic diversity, we performed whole genome sequencing of the type strain (CBS180), and of 10 other clinical isolates. Our results revealed high levels of genetic heterozygosity structured in non-homogeneous patterns, which are indicative of a hybrid genome shaped by events of loss of heterozygosity (LOH). All analyzed strains were hybrids and could be clustered into two distinct clades. We found large variability across strains in terms of ploidy, patterns of LOH, and mitochondrial genome heterogeneity that suggest potential admixture between hybrids. Altogether, our results identify a new hybrid species with virulence potential toward humans and underscore the potential role of hybridization in the emergence of novel pathogenic lineages.
Collapse
Affiliation(s)
- Verónica Mixão
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Antonio Perez Hansen
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Ester Saus
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Cornelia Lass-Florl
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Toni Gabaldón
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
3
|
Kovács R, Saleh Q, Bozó A, Tóth Z, Gesztelyi R, Kardos T, Kardos G, Takacs I, Majoros L. Killing Activity of Micafungin Against Candida albicans, C. dubliniensis and Candida africana in the Presence of Human Serum. Mycopathologia 2017; 182:979-987. [PMID: 28699056 DOI: 10.1007/s11046-017-0178-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/06/2017] [Indexed: 11/26/2022]
Abstract
We compared killing activity of micafungin in time-kill experiments in RPMI-1640 with and without 50% serum against Candida albicans, Candida dubliniensis and Candida africana reference strains and clinical isolates. Killing rates (k values) were determined for each strain and concentration. In RPMI-1640 MIC ranges were 0.015-0.03, 0.015-0.03 and 0.015 mg/L against C. albicans, C. dubliniensis and C. africana, respectively. In 50% serum MIC values for the three species increased 16- to 64-fold. In RPMI-1640 micafungin was fungicidal against two of three C. albicans isolates at 16 and 32 mg/L within 14.54 h and fungistatic against all C. africana and C. dubliniensis. Fifty per cent serum significantly decreased the growth rate of C. africana, but not of the other two species; weak in vivo replication ability of C. africana was confirmed in murine model. In 50% serum micafungin at 0.25 and 1 mg/L did not inhibit any of the three species (k values were always negative). Micafungin killing rate in 50% serum at 4, 16 and 32 mg/L was significantly decreased for C. albicans, but increased for C. dubliniensis compared to RPMI-1640. Killing activity of micafungin against C. africana was comparable or higher in 50% serum than in RPMI-1640. Although micafungin is a highly protein-bound drug, it was equally effective against the species of the C. albicans complex in 50% serum at therapeutic trough concentration (4 mg/L). Both in vitro and in vivo data confirmed the low virulence of C. africana compared to the two sibling species.
Collapse
Affiliation(s)
- Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Nagyerdei krt. 98., 4032, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Qasem Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Nagyerdei krt. 98., 4032, Hungary
| | - Aliz Bozó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Nagyerdei krt. 98., 4032, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Nagyerdei krt. 98., 4032, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Kardos
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Kardos
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Nagyerdei krt. 98., 4032, Hungary
| | - István Takacs
- Faculty of Health, University of Miskolc, Miskolc, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Nagyerdei krt. 98., 4032, Hungary.
| |
Collapse
|
4
|
Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida Species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol 2010; 48:1366-77. [PMID: 20164282 DOI: 10.1128/jcm.02117-09] [Citation(s) in RCA: 442] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluconazole in vitro susceptibility test results for 256,882 isolates of Candida spp. were collected from 142 sites in 41 countries from June 1997 to December 2007. Data were collected for 197,619 isolates tested with voriconazole from 2001 to 2007. A total of 31 different species of Candida were isolated. Increased rates of isolation of the common non-albicans species C. glabrata (10.2% to 11.7%), C. tropicalis (5.4% to 8.0%), and C. parapsilosis (4.8% to 5.6%) were noted when the time periods 1997 to 2000 and 2005 to 2007 were compared. Investigators tested clinical isolates of Candida spp. by the CLSI M44-A disk diffusion method. Overall, 90.2% of Candida isolates tested were susceptible (S) to fluconazole; however, 13 of 31 species identified exhibited decreased susceptibility (<75% S), similar to that seen with the resistant (R) species C. glabrata and C. krusei. Among 197,619 isolates of Candida spp. tested against voriconazole, 95.0% were S and 3% were R. About 30% of fluconazole-R isolates of C. albicans, C. glabrata, C. tropicalis, C. rugosa, C. lipolytica, C. pelliculosa, C. apicola, C. haemulonii, C. humicola, C. lambica, and C. ciferrii remained S to voriconazole. An increase in fluconazole resistance over time was seen with C. parapsilosis, C. guilliermondii, C. lusitaniae, C. sake, and C. pelliculosa. Among the emerging fluconazole-R species were C. guilliermondii (11.4% R), C. inconspicua (53.2% R), C. rugosa (41.8% R), and C. norvegensis (40.7% R). The rates of isolation of C. rugosa, C. inconspicua, and C. norvegensis increased by 5- to 10-fold over the 10.5-year study period. C. guilliermondii and C. rugosa were most prominent in Latin America, whereas C. inconspicua and C. norvegensis were most common in Eastern European countries. This survey identifies several less-common species of Candida with decreased susceptibility to azoles. These organisms may pose a future threat to optimal antifungal therapy and underscore the importance of prompt and accurate species identification and antifungal susceptibility testing.
Collapse
|
5
|
Szabó Z, Sóczó G, Miszti C, Hermann P, Rozgonyi F. In vitro activity of fluconazole and amphotericin B against Candida inconspicua clinical isolates as determined by the time-kill method. Acta Microbiol Immunol Hung 2008; 55:53-61. [PMID: 18507151 DOI: 10.1556/amicr.55.2008.1.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Candida inconspicua is an emerging pathogen in immunocompromised patients possessing inherently decreased susceptibility to fluconazole. We determined the MICs and killing activity of fluconazole and amphotericin B against C. inconspicua clinical isolates as well as reference strain C. inconspicua ATCC 16783 for comparison. MICs were determined using the standard broth microdilution method. Killing rates were determined using time-kill methodology at 0.5-16 x MIC fluconazole and amphotericin B concentrations. Fluconazole and amphotericin B MIC values varied between 16-128 mg/l and 0.5-1 mg/l, respectively. In time kill-assays fluconazole showed fungistatic effect at 1-16 x MIC concentrations against all tested strains after 24 h-incubation, but became fungicidal after 48 h at 4-16 x MIC concentrations. The time necessary to achieve fungicidal endpoint at 1 mg/l amphotericin B concentration ranged from 2 to 24 h. Our in vitro results confirm the data that fluconazole is ineffective against C. inconspicua at the fluconazole serum concentration attainable in humans. Amphotericin B due to its rapid killing activity seems to be a good alternative for the treatment of infections caused by C. inconspicua.
Collapse
Affiliation(s)
- Zsuzsanna Szabó
- Institute of Medical Microbiology, Doctoral School, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
6
|
Sóczó G, Kardos G, McNicholas PM, Falusi E, Gergely L, Majoros L. Posaconazole susceptibility testing against Candida species: comparison of broth microdilution and E-test methods. Mycoses 2007; 50:178-82. [PMID: 17472612 DOI: 10.1111/j.1439-0507.2007.01356.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Posaconazole (POS) is a newer triazole with activity against yeasts and moulds. POS and fluconazole were tested in vitro against 32 Candida albicans, 30 C. glabrata, 21 C. tropicalis, 29 C. krusei, 28 C. parapsilosis, 50 C. inconspicua, 13 C. kefyr and 5 C. famata isolates using CLSI broth microdilution method (BMD). We compared E-test and a modified BMD using polyethylene-glycol (PEG) as solvent to the CLSI method. BMDs and E-test were performed according to CLSI and the manufacturer's instructions respectively. Geometric means of POS MICs using BMD were 0.71, 0.22 and 0.21 microg ml(-1) against C. glabrata, C. krusei and C. inconspicua, respectively, and remained below 0.1 microg ml(-1) against all other species tested. One of two C. albicans and two of three C. glabrata isolates resistant to fluconazole showed MICs above 8 microg ml(-1) to POS. The impact of using PEG instead of DMSO had only a minor effect (agreements above 95% with the exception of C. parapsilosis). E-tests read after 24 h showed good agreement with the BMD. POS exhibited excellent in vitro activity against Hungarian Candida strains. E-test showed good correlation with the CLSI method, but to facilitate the comparability of results we believe that DMSO should be used as solvent in the BMD.
Collapse
Affiliation(s)
- G Sóczó
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
7
|
Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007; 20:133-63. [PMID: 17223626 PMCID: PMC1797637 DOI: 10.1128/cmr.00029-06] [Citation(s) in RCA: 2853] [Impact Index Per Article: 158.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Invasive candidiasis (IC) is a leading cause of mycosis-associated mortality in the United States. We examined data from the National Center for Health Statistics and reviewed recent literature in order to update the epidemiology of IC. IC-associated mortality has remained stable, at approximately 0.4 deaths per 100,000 population, since 1997, while mortality associated with invasive aspergillosis has continued to decline. Candida albicans remains the predominant cause of IC, accounting for over half of all cases, but Candida glabrata has emerged as the second most common cause of IC in the United States, and several less common Candida species may be emerging, some of which can exhibit resistance to triazoles and/or amphotericin B. Crude and attributable rates of mortality due to IC remain unacceptably high and unchanged for the past 2 decades. Nonpharmacologic preventive strategies should be emphasized, including hand hygiene; appropriate use, placement, and care of central venous catheters; and prudent use of antimicrobial therapy. Given that delays in appropriate antifungal therapy are associated with increased mortality, improved use of early empirical, preemptive, and prophylactic therapies should also help reduce IC-associated mortality. Several studies have now identified important variables that can be used to predict risk of IC and to help guide preventive strategies such as antifungal prophylaxis and early empirical therapy. However, improved non-culture-based diagnostics are needed to expand the potential for preemptive (or early directed) therapy. Further research to improve diagnostic, preventive, and therapeutic strategies is necessary to reduce the considerable morbidity and mortality associated with IC.
Collapse
Affiliation(s)
- M A Pfaller
- Medical Microbiology Division, C606 GH, Department of Pathology, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | |
Collapse
|
8
|
Majoros L, Kardos G, Szabó B, Sipiczki M. Caspofungin susceptibility testing of Candida inconspicua: correlation of different methods with the minimal fungicidal concentration. Antimicrob Agents Chemother 2005; 49:3486-8. [PMID: 16048965 PMCID: PMC1196219 DOI: 10.1128/aac.49.8.3486-3488.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minimal inhibitory and minimal fungicidal concentrations of caspofungin were determined for 48 Candida inconspicua isolates. By using CLSI (formerly NCCLS) methodology with the partial inhibition endpoint criterion, caspofungin exhibited a good fungicidal effect against C. inconspicua (the MIC(90) was 0.25 microg/ml and the minimum fungicidal concentration [MFC] was 0.5 microg/ml after 24 h). Total inhibition yielded falsely elevated MICs, exceeding even the respective MFCs.
Collapse
Affiliation(s)
- L Majoros
- Department of Medical Microbiology, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary.
| | | | | | | |
Collapse
|