1
|
Lang PA, de Munnik M, Oluwole AO, Claridge TDW, Robinson CV, Brem J, Schofield CJ. How Clavulanic Acid Inhibits Serine β-Lactamases. Chembiochem 2024; 25:e202400280. [PMID: 39052765 DOI: 10.1002/cbic.202400280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Clavulanic acid is a medicinally important inhibitor of serine β-lactamases (SBLs). We report studies on the mechanisms by which clavulanic acid inhibits representative Ambler class A (TEM-116), C (Escherichia coli AmpC), and D (OXA-10) SBLs using denaturing and non-denaturing mass spectrometry (MS). Similarly to observations with penam sulfones, most of the results support a mechanism involving acyl enzyme complex formation, followed by oxazolidine ring opening without efficient subsequent scaffold fragmentation (at pH 7.5). This observation contrasts with previous MS studies, which identified clavulanic acid scaffold fragmented species as the predominant SBL bound products. In all the SBLs studied here, fragmentation was promoted by acidic conditions, which are commonly used in LC-MS analyses. Slow fragmentation was, however, observed under neutral conditions with TEM-116 on prolonged reaction with clavulanic acid. Although our results imply clavulanic acid scaffold fragmentation is likely not crucial for SBL inhibition in vivo, development of inhibitors that fragment to give stable covalent complexes is of interest.
Collapse
Affiliation(s)
- Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Ineos Oxford Institute for Antimicrobial Research, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Ineos Oxford Institute for Antimicrobial Research, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Abraham O Oluwole
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Sherrington Road, Oxford, OX1 3QU, United Kingdom
| | - Timothy D W Claridge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Sherrington Road, Oxford, OX1 3QU, United Kingdom
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Ineos Oxford Institute for Antimicrobial Research, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Str. Arany Janos 11, 400028, Cluj-Napoca, Romania
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Ineos Oxford Institute for Antimicrobial Research, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
2
|
Barbero N, Fernández‐Santamaría R, Mayorga C, Martin‐Serrano Á, Salas M, Bogas G, Nájera F, Pérez‐Sala D, Pérez‐Inestrosa E, Fernandez TD, Montañez MI, Torres MJ. Identification of an antigenic determinant of clavulanic acid responsible for IgE-mediated reactions. Allergy 2019; 74:1490-1501. [PMID: 30829415 DOI: 10.1111/all.13761] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/23/2019] [Accepted: 02/18/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Selective reactions to clavulanic acid (CLV) account for around 30% of immediate reactions after administration of amoxicillin-CLV. Currently, no immunoassay is available for detecting specific IgE to CLV, and its specific recognition in patients with immediate reactions has only been demonstrated by basophil activation testing, however with suboptimal sensitivity. The lack of knowledge regarding the structure of the drug that remains bound to proteins (antigenic determinant) is hampering the development of in vitro diagnostics. We aimed to identify the antigenic determinants of CLV as well as to evaluate their specific IgE recognition and potential role for diagnosis. METHODS Based on complex CLV degradation mechanisms, we hypothesized the formation of two antigenic determinants for CLV, AD-I (N-protein, 3-oxopropanamide) and AD-II (N-protein, 3-aminopropanamide), and designed different synthetic analogs to each one. IgE recognition of these structures was evaluated in basophils from patients with selective reactions to CLV and tolerant subjects. In parallel, the CLV fragments bound to proteins were identified by proteomic approaches. RESULTS Two synthetic analogs of AD-I were found to activate basophils from allergic patients. This determinant was also detected bound to lysines 195 and 475 of CLV-treated human serum albumin. One of these analogs was able to activate basophils in 59% of patients whereas CLV only in 41%. Combining both results led to an increase in basophil activation in 69% of patients, and only in 12% of controls. CONCLUSION We have identified AD-I as one CLV antigenic determinant, which is the drug fragment that remains protein-bound.
Collapse
Affiliation(s)
- Nekane Barbero
- Andalusian Center for Nanomedicine and Biotechnology – BIONANDMálaga Spain
- Department of Organic Chemistry IBIMAUniversity of Málaga Málaga Spain
| | | | - Cristobalina Mayorga
- Andalusian Center for Nanomedicine and Biotechnology – BIONANDMálaga Spain
- Allergy Research GroupInstituto de Investigacion Biomédica de Malaga‐IBIMA Málaga Spain
- Allergy UnitHospital Regional Universitario de Malaga Málaga Spain
| | - Ángela Martin‐Serrano
- Andalusian Center for Nanomedicine and Biotechnology – BIONANDMálaga Spain
- Allergy Research GroupInstituto de Investigacion Biomédica de Malaga‐IBIMA Málaga Spain
| | - María Salas
- Allergy Research GroupInstituto de Investigacion Biomédica de Malaga‐IBIMA Málaga Spain
- Allergy UnitHospital Regional Universitario de Malaga Málaga Spain
| | - Gador Bogas
- Allergy Research GroupInstituto de Investigacion Biomédica de Malaga‐IBIMA Málaga Spain
- Allergy UnitHospital Regional Universitario de Malaga Málaga Spain
| | - Francisco Nájera
- Andalusian Center for Nanomedicine and Biotechnology – BIONANDMálaga Spain
- Department of Organic Chemistry IBIMAUniversity of Málaga Málaga Spain
| | | | - Ezequiel Pérez‐Inestrosa
- Andalusian Center for Nanomedicine and Biotechnology – BIONANDMálaga Spain
- Department of Organic Chemistry IBIMAUniversity of Málaga Málaga Spain
| | - Tahia D. Fernandez
- Allergy Research GroupInstituto de Investigacion Biomédica de Malaga‐IBIMA Málaga Spain
| | - María I. Montañez
- Andalusian Center for Nanomedicine and Biotechnology – BIONANDMálaga Spain
- Allergy Research GroupInstituto de Investigacion Biomédica de Malaga‐IBIMA Málaga Spain
| | - María J. Torres
- Andalusian Center for Nanomedicine and Biotechnology – BIONANDMálaga Spain
- Allergy Research GroupInstituto de Investigacion Biomédica de Malaga‐IBIMA Málaga Spain
- Allergy UnitHospital Regional Universitario de Malaga Málaga Spain
| |
Collapse
|
3
|
Tassoni R, Blok A, Pannu NS, Ubbink M. New Conformations of Acylation Adducts of Inhibitors of β-Lactamase from Mycobacterium tuberculosis. Biochemistry 2019; 58:997-1009. [PMID: 30632739 PMCID: PMC6383187 DOI: 10.1021/acs.biochem.8b01085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Mycobacterium tuberculosis (Mtb), the main causative
agent of tuberculosis (TB), is naturally resistant to β-lactam
antibiotics due to the production of the extended spectrum β-lactamase
BlaC. β-Lactam/β-lactamase inhibitor combination therapies
can circumvent the BlaC-mediated resistance of Mtb and are promising
treatment options against TB. However, still little is known of the
exact mechanism of BlaC inhibition by the β-lactamase inhibitors
currently approved for clinical use, clavulanic acid, sulbactam, tazobactam,
and avibactam. Here, we present the X-ray diffraction crystal structures
of the acyl-enzyme adducts of wild-type BlaC with the four inhibitors.
The +70 Da adduct derived from clavulanate and the trans-enamine acylation adducts of sulbactam and tazobactam are reported.
BlaC in complex with avibactam revealed two inhibitor conformations.
Preacylation binding could not be observed because inhibitor binding
was not detected in BlaC variants carrying a substitution of the active
site serine 70 to either alanine or cysteine, by crystallography,
ITC or NMR. These results suggest that the catalytic serine 70 is
necessary not only for enzyme acylation but also for increasing BlaC
affinity for inhibitors in the preacylation state. The structure of
BlaC with the serine to cysteine mutation showed a covalent linkage
of the cysteine 70 Sγ atom to the nearby amino group of lysine
73. The differences of adduct conformations between BlaC and other
β-lactamases are discussed.
Collapse
Affiliation(s)
- Raffaella Tassoni
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , Leiden 2333CC , The Netherlands
| | - Anneloes Blok
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , Leiden 2333CC , The Netherlands
| | - Navraj S Pannu
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , Leiden 2333CC , The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , Leiden 2333CC , The Netherlands
| |
Collapse
|
4
|
Pereira R, Rabelo VWH, Sibajev A, Abreu PA, Castro HC. Class A β-lactamases and inhibitors: In silico analysis of the binding mode and the relationship with resistance. J Biotechnol 2018; 279:37-46. [PMID: 29753682 DOI: 10.1016/j.jbiotec.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/22/2018] [Accepted: 05/03/2018] [Indexed: 02/01/2023]
Abstract
β-lactams are one of the most common antimicrobials used to treat bacterial infections. However, bacterial resistance has compromised their efficacy, mainly due to the β-lactamase enzyme production. To overcome this resistance, β-lactamase inhibitors can be used in association with these antimicrobials. Herein, we analyzed the structural characteristics of β-lactamases and their interactions with classical inhibitors, such as clavulanic acid (CA), sulbactam (SB) and tazobactam (TZ) to gain insights into resistance. The homology models of five class A β-lactamases, namely CARB-3, IMI-1, SFO-1, SHV-5 and TEM-10, were constructed and validated and revealed an overall 3D structural conservation, but with significant differences in the electrostatic potential maps, especially at important regions in the catalytic site. Molecular dockings of CA, SB and TZ with these enzymes revealed a covalent bond with the S70 in all complexes, except Carb-3 which is in agreement with experimental data reported so far. This is likely related to the less voluminous active site of Carb-3 model. Although few specific contacts were observed in the β-lactamase-inhibitor complexes, all compounds interacted with the residues in positions 73, 130, 132, 236 and 237. Therefore, this study provides new perspectives for the design of innovative compounds with broad-spectrum inhibitory profiles against β-lactamases.
Collapse
Affiliation(s)
- Rebeca Pereira
- Programa de Pós-graduação em Ciências e Biotecnologia - Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, CEP 24210-130, Brazil
| | - Vitor Won-Held Rabelo
- Programa de Pós-graduação em Ciências e Biotecnologia - Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, CEP 24210-130, Brazil; Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Campus Macaé, RJ, CEP 27965-045, Brazil
| | - Alexander Sibajev
- Centro de Ciências da Saúde - Curso de Medicina, Universidade Federal de Roraima, Campus do Paricarana, Boa Vista, RR, CEP 69304-000, Brazil
| | - Paula Alvarez Abreu
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Campus Macaé, RJ, CEP 27965-045, Brazil.
| | - Helena Carla Castro
- Programa de Pós-graduação em Ciências e Biotecnologia - Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, CEP 24210-130, Brazil.
| |
Collapse
|
5
|
Crystal structure of the extended-spectrum β-lactamase PER-2 and insights into the role of specific residues in the interaction with β-lactams and β-lactamase inhibitors. Antimicrob Agents Chemother 2014; 58:5994-6002. [PMID: 25070104 DOI: 10.1128/aac.00089-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PER-2 belongs to a small (7 members to date) group of extended-spectrum β-lactamases. It has 88% amino acid identity with PER-1 and both display high catalytic efficiencies toward most β-lactams. In this study, we determined the X-ray structure of PER-2 at 2.20 Å and evaluated the possible role of several residues in the structure and activity toward β-lactams and mechanism-based inhibitors. PER-2 is defined by the presence of a singular trans bond between residues 166 to 167, which generates an inverted Ω loop, an expanded fold of this domain that results in a wide active site cavity that allows for efficient hydrolysis of antibiotics like the oxyimino-cephalosporins, and a series of exclusive interactions between residues not frequently involved in the stabilization of the active site in other class A β-lactamases. PER β-lactamases might be included within a cluster of evolutionarily related enzymes harboring the conserved residues Asp136 and Asn179. Other signature residues that define these enzymes seem to be Gln69, Arg220, Thr237, and probably Arg/Lys240A ("A" indicates an insertion according to Ambler's scheme for residue numbering in PER β-lactamases), with structurally important roles in the stabilization of the active site and proper orientation of catalytic water molecules, among others. We propose, supported by simulated models of PER-2 in combination with different β-lactams, the presence of a hydrogen-bond network connecting Ser70-Gln69-water-Thr237-Arg220 that might be important for the proper activity and inhibition of the enzyme. Therefore, we expect that mutations occurring in these positions will have impacts on the overall hydrolytic behavior.
Collapse
|