1
|
Damiani E, Casarotta E, Carsetti A, Mariotti G, Vannicola S, Giorgetti R, Domizi R, Scorcella C, Adrario E, Donati A. Too much tolerance for hyperoxemia in mechanically ventilated patients with SARS-CoV-2 pneumonia? Report from an Italian intensive care unit. Front Med (Lausanne) 2022; 9:957773. [PMID: 35966865 PMCID: PMC9365979 DOI: 10.3389/fmed.2022.957773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background In COVID-19 patients requiring mechanical ventilation, the administration of high oxygen (O2) doses for prolonged time periods may be necessary. Although life-saving in most cases, O2 may exert deleterious effects if administered in excessive concentrations. We aimed to describe the prevalence of hyperoxemia and excessive O2 administration in mechanically ventilated patients with SARS-CoV-2 pneumonia and determine whether hyperoxemia is associated with mortality in the Intensive Care Unit (ICU) or the onset of ventilator-associated pneumonia (VAP). Materials and methods Retrospective single-center study on adult patients with SARS-CoV-2 pneumonia requiring invasive mechanical ventilation for ≥48 h. Patients undergoing extracorporeal respiratory support were excluded. We calculated the excess O2 administered based on the ideal arterial O2 tension (PaO2) target of 55-80 mmHg. We defined hyperoxemia as PaO2 > 100 mmHg and hyperoxia + hyperoxemia as an inspired O2 fraction (FiO2) > 60% + PaO2 > 100 mmHg. Risk factors for ICU-mortality and VAP were assessed through multivariate analyses. Results One hundred thirty-four patients were included. For each day of mechanical ventilation, each patient received a median excess O2 of 1,121 [829-1,449] L. Hyperoxemia was found in 38 [27-55]% of arterial blood gases, hyperoxia + hyperoxemia in 11 [5-18]% of cases. The FiO2 was not reduced in 69 [62-76]% of cases of hyperoxemia. Adjustments were made more frequently with higher PaO2 or initial FiO2 levels. ICU-mortality was 32%. VAP was diagnosed in 48.5% of patients. Hyperoxemia (OR 1.300 95% CI [1.097-1.542]), time of exposure to hyperoxemia (OR 2.758 [1.406-5.411]), hyperoxia + hyperoxemia (OR 1.144 [1.008-1.298]), and daily excess O2 (OR 1.003 [1.001-1.005]) were associated with higher risk for ICU-mortality, independently of age, Sequential Organ failure Assessment score at ICU-admission and mean PaO2/FiO2. Hyperoxemia (OR 1.033 [1.006-1.061]), time of exposure to hyperoxemia (OR 1.108 [1.018-1.206]), hyperoxia + hyperoxemia (OR 1.038 [1.003-1.075]), and daily excess O2 (OR 1.001 [1.000-1.001]) were identified as risk factors for VAP, independently of body mass index, blood transfusions, days of neuromuscular blocking agents (before VAP), prolonged prone positioning and mean PaO2/FiO2 before VAP. Conclusion Excess O2 administration and hyperoxemia were common in mechanically ventilated patients with SARS-CoV-2 pneumonia. The exposure to hyperoxemia may be associated with ICU-mortality and greater risk for VAP.
Collapse
Affiliation(s)
- Elisa Damiani
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria “Ospedali Riuniti Umberto I-Lancisi-Salesi”, Ancona, Italy
| | - Erika Casarotta
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Carsetti
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria “Ospedali Riuniti Umberto I-Lancisi-Salesi”, Ancona, Italy
| | - Giulia Mariotti
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Sara Vannicola
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria “Ospedali Riuniti Umberto I-Lancisi-Salesi”, Ancona, Italy
| | - Rachele Giorgetti
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Roberta Domizi
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria “Ospedali Riuniti Umberto I-Lancisi-Salesi”, Ancona, Italy
| | - Claudia Scorcella
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria “Ospedali Riuniti Umberto I-Lancisi-Salesi”, Ancona, Italy
| | - Erica Adrario
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria “Ospedali Riuniti Umberto I-Lancisi-Salesi”, Ancona, Italy
| | - Abele Donati
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria “Ospedali Riuniti Umberto I-Lancisi-Salesi”, Ancona, Italy
| |
Collapse
|
2
|
Nakane M. Biological effects of the oxygen molecule in critically ill patients. J Intensive Care 2020; 8:95. [PMID: 33317639 PMCID: PMC7734465 DOI: 10.1186/s40560-020-00505-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
The medical use of oxygen has been widely and frequently proposed for patients, especially those under critical care; however, its benefit and drawbacks remain controversial for certain conditions. The induction of oxygen therapy is commonly considered for either treating or preventing hypoxia. Therefore, the concept of different types of hypoxia should be understood, particularly in terms of their mechanism, as the effect of oxygen therapy principally varies by the physiological characteristics of hypoxia. Oxygen molecules must be constantly delivered to all cells throughout the human body and utilized effectively in the process of mitochondrial oxidative phosphorylation, which is necessary for generating energy through the formation of adenosine triphosphate. If the oxygen availability at the cellular level is inadequate for sustaining the metabolism, the condition of hypoxia which is characterized as heterogeneity in tissue oxygen tension may develop, which is called dysoxia, a more physiological concept that is related to hypoxia. In such hypoxic patients, repetitive measurements of the lactate level in blood are generally recommended in order to select the adequate therapeutic strategy targeting a reduction in lactate production. Excessive oxygen, however, may actually induce a hyperoxic condition which thus can lead to harmful oxidative stress by increasing the production of reactive oxygen species, possibly resulting in cellular dysfunction or death. In contrast, the human body has several oxygen-sensing mechanisms for preventing both hypoxia and hyperoxia that are employed to ensure a proper balance between the oxygen supply and demand and prevent organs and cells from suffering hyperoxia-induced oxidative stress. Thus, while the concept of hyperoxia is known to have possible adverse effects on the lung, the heart, the brain, or other organs in various pathological conditions of critically ill patients, and no obvious evidence has yet been proposed to totally support liberal oxygen supplementation in any subset of critically ill patients, relatively conservative oxygen therapy with cautious monitoring appears to be safe and may improve the outcome by preventing harmful oxidative stress resulting from excessive oxygen administration. Given the biological effects of oxygen molecules, although the optimal target levels remain controversial, unnecessary oxygen administration should be avoided, and exposure to hyperoxemia should be minimized in critically ill patients.
Collapse
Affiliation(s)
- Masaki Nakane
- Department of Emergency and Critical Care Medicine, Yamagata University Hospital, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan.
| |
Collapse
|
3
|
Jaffal K, Six S, Zerimech F, Nseir S. Relationship between hyperoxemia and ventilator associated pneumonia. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:453. [PMID: 29264370 DOI: 10.21037/atm.2017.10.15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous studies suggest a relationship between hyperoxemia and ventilator-associated pneumonia (VAP). Hyperoxemia is responsible for denitrogenation phenomena, and inhibition of surfactant production, promoting atelectasis in mechanically ventilated patients. Further, hyperoxemia impairs the efficacy of alveolar macrophages to migrate, phagocyte and kill bacteria. Oxygen can also cause pulmonary-specific toxic effect called hyperoxic acute lung injury leading to longer duration of mechanical ventilation. All these hyperoxic effects are well-known risk factors for VAP. A recent retrospective large single center study identified hyperoxemia as an independent risk factor for VAP. However, two recent randomized controlled trials evaluated the impact of conservative oxygen strategy versus a liberal strategy, but did not confirm the role of hyperoxemia in lower respiratory tract infection occurrence. In this review, we discuss animal and human studies suggesting a relationship between these two common conditions in mechanically ventilated patients and potential interventions that should be evaluated. Further large prospective studies in carefully selected groups of patients are required to confirm the potential role of hyperoxemia in VAP pathogenesis and to evaluate the impact of a conservative oxygen strategy vs. a conventional strategy on the incidence of VAP.
Collapse
Affiliation(s)
| | - Sophie Six
- CHU Lille, Centre de Réanimation, Lille, France.,Lille University, Faculté de Médecine, Lille, France
| | - Farid Zerimech
- CHU Lille, Centre de Biologie et de Pathologie, Lille, France
| | - Saad Nseir
- CHU Lille, Centre de Réanimation, Lille, France.,Lille University, Faculté de Médecine, Lille, France
| |
Collapse
|
4
|
Patel VS, Sampat V, Espey MG, Sitapara R, Wang H, Yang X, Ashby CR, Thomas DD, Mantell LL. Ascorbic Acid Attenuates Hyperoxia-Compromised Host Defense against Pulmonary Bacterial Infection. Am J Respir Cell Mol Biol 2016; 55:511-520. [PMID: 27120084 DOI: 10.1165/rcmb.2015-0310oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Supraphysiological concentrations of oxygen (hyperoxia) can compromise host defense and increase susceptibility to bacterial infections, causing ventilator-associated pneumonia. The phagocytic activity of macrophages is impaired by hyperoxia-induced increases in the levels of reactive oxygen species (ROS) and extracellular high-mobility group box protein B1 (HMGB1). Ascorbic acid (AA), an essential nutrient and antioxidant, has been shown to be beneficial in various animal models of ROS-mediated diseases. The aim of this study was to determine whether AA could attenuate hyperoxia-compromised host defense and improve macrophage functions against bacterial infections. C57BL/6 male mice were exposed to hyperoxia (≥98% O2, 48 h), followed by intratracheal inoculation with Pseudomonas aeruginosa, and simultaneous intraperitoneal administration of AA. AA (50 mg/kg) significantly improved bacterial clearance in the lungs and airways, and significantly reduced HMGB1 accumulation in the airways. The incubation of RAW 264.7 cells (a macrophage-like cell line) with AA (0-1,000 μM) before hyperoxic exposure (95% O2) stabilized the phagocytic activity of macrophages in a concentration-dependent manner. The AA-enhanced macrophage function was associated with significantly decreased production of intracellular ROS and accumulation of extracellular HMGB1. These data suggest that AA supplementation can prevent or attenuate the development of ventilator-associated pneumonia in patients receiving oxygen support.
Collapse
Affiliation(s)
- Vivek S Patel
- 1 Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, New York
| | - Vaishali Sampat
- 1 Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, New York
| | | | - Ravikumar Sitapara
- 1 Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, New York
| | - Haichao Wang
- 3 The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York; and
| | - Xiaojing Yang
- 1 Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, New York
| | - Charles R Ashby
- 1 Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, New York
| | - Douglas D Thomas
- 4 Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Lin L Mantell
- 1 Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, New York.,3 The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York; and
| |
Collapse
|
5
|
Six S, Jaffal K, Ledoux G, Jaillette E, Wallet F, Nseir S. Hyperoxemia as a risk factor for ventilator-associated pneumonia. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:195. [PMID: 27334713 PMCID: PMC4917974 DOI: 10.1186/s13054-016-1368-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022]
Abstract
Background Consequences of hyperoxemia, such as acute lung injury, atelectasis, and reduced bacterial clearance, might promote ventilator-associated pneumonia (VAP). The aim of our study was to determine the relationship between hyperoxemia and VAP. Methods This retrospective observational study was performed in a 30-bed mixed ICU. All patients receiving invasive mechanical ventilation for more than 48 hours were eligible. VAP was defined using clinical, radiologic, and quantitative microbiological criteria. Hyperoxemia was defined as PaO2 > 120 mmHg. All data, except those related to hyperoxemia, were prospectively collected. Risk factors for VAP were determined using univariate and multivariate analysis. Results VAP was diagnosed in 141 of the 503 enrolled patients (28 %). The incidence rate of VAP was 14.7 per 1000 ventilator days. Hyperoxemia at intensive care unit admission (67 % vs 53 %, OR = 1.8, 95 % CI (1.2, 29), p <0.05) and number of days spent with hyperoxemia were significantly more frequent in patients with VAP, compared with those with no VAP. Multivariate analysis identified number of days spent with hyperoxemia (OR = 1.1, 95 % CI (1.04, 1.2) per day, p = 0.004), simplified acute physiology score (SAPS) II (OR = 1.01, 95 % CI (1.002, 1.024) per point, p < 0 .05), red blood cell transfusion (OR = 1.8, 95 % CI (1.2, 2.7), p = 0.01), and proton pomp inhibitor use (OR = 1.9, 95 % CI (1.03, 1.2), p < 0.05) as independent risk factors for VAP. Other multiple regression models also identified hyperoxemia at ICU admission (OR = 1.89, 95 % CI (1.23, 2.89), p = 0.004), and percentage of days with hyperoxemia (OR = 2.2, 95 % CI (1.08, 4.48), p = 0.029) as independent risk factors for VAP. Conclusion Hyperoxemia is independently associated with VAP. Further studies are required to confirm our results.
Collapse
Affiliation(s)
- Sophie Six
- CHU Lille, Centre de Réanimation, F-59000, Lille, France
| | - Karim Jaffal
- CHU Lille, Centre de Réanimation, F-59000, Lille, France
| | | | | | - Frédéric Wallet
- CHU Lille, Centre de Biologie et de Pathologie, F-59000, Lille, France
| | - Saad Nseir
- CHU Lille, Centre de Réanimation, F-59000, Lille, France. .,Univ Lille, Faculté de Médecine, F-59000, Lille, France.
| |
Collapse
|