1
|
Endo TH, Santos MHDM, Scandorieiro S, Gonçalves BC, Vespero EC, Perugini MRE, Pavanelli WR, Nakazato G, Kobayashi RKT. Selective Serotonin Reuptake Inhibitors: Antimicrobial Activity Against ESKAPEE Bacteria and Mechanisms of Action. Antibiotics (Basel) 2025; 14:51. [PMID: 39858337 PMCID: PMC11760871 DOI: 10.3390/antibiotics14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Multidrug-resistant bacteria cause over 700,000 deaths annually, a figure projected to reach 10 million by 2050. Among these bacteria, the ESKAPEE group is notable for its multiple resistance mechanisms. Given the high costs of developing new antimicrobials and the rapid emergence of resistance, drug repositioning offers a promising alternative. Results: This study evaluates the antibacterial activity of sertraline and paroxetine. When tested against clinical and reference strains from the ESKAPEE group, sertraline exhibited minimum inhibitory concentration (MIC) values between 15 and 126 μg/mL, while the MIC values for paroxetine ranged from 60 to 250 μg/mL. Both drugs effectively eradicated bacterial populations within 2 to 24 h and caused morphological changes, such as protrusions and cellular fragmentation, as shown by electron scanning microscopy. Regarding their mechanisms of action as antibacterials, for the first time, increased membrane permeability was detected, as evidenced by heightened dye absorption, along with the increased presence of total proteins and dsDNA in the extracellular medium of Escherichia coli ATCC2 25922 and Staphylococcus aureus ATCC 25923, and oxidative stress was also detected in bacteria treated with sertraline and paroxetine, with reduced efficiency observed in the presence of antioxidants and higher levels of oxygen-reactive species evidenced by their reaction with 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate. The drugs also inhibited bacterial efflux pumps, increasing ethidium bromide accumulation and enhancing tetracycline activity in resistant strains. Conclusions: These findings indicate that sertraline and paroxetine could serve as alternative treatments against multidrug-resistant bacteria, as well as efflux pump inhibitors (EPIs), and they support further development of antimicrobial agents based on these compounds.
Collapse
Affiliation(s)
- Thiago Hideo Endo
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (T.H.E.); (M.H.d.M.S.); (B.C.G.); (G.N.)
| | - Mariana Homem de Mello Santos
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (T.H.E.); (M.H.d.M.S.); (B.C.G.); (G.N.)
| | - Sara Scandorieiro
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, Hospital Universitário de Londrina, Londrina 86038-350, Brazil;
| | - Bruna Carolina Gonçalves
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (T.H.E.); (M.H.d.M.S.); (B.C.G.); (G.N.)
| | - Eliana Carolina Vespero
- Laboratory of Clinical Analysis Microbiology Sector, Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, Hospital Universitário de Londrina, Londrina 86038-350, Brazil; (E.C.V.); (M.R.E.P.)
| | - Márcia Regina Eches Perugini
- Laboratory of Clinical Analysis Microbiology Sector, Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, Hospital Universitário de Londrina, Londrina 86038-350, Brazil; (E.C.V.); (M.R.E.P.)
| | - Wander Rogério Pavanelli
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (T.H.E.); (M.H.d.M.S.); (B.C.G.); (G.N.)
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (T.H.E.); (M.H.d.M.S.); (B.C.G.); (G.N.)
| |
Collapse
|
2
|
Page EF, Blackmon MF, Calhoun TR. Second harmonic scattering investigation of bacterial efflux induced by the antibiotic tetracycline. J Chem Phys 2024; 161:174710. [PMID: 39498886 PMCID: PMC11540441 DOI: 10.1063/5.0231391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/20/2024] [Indexed: 11/07/2024] Open
Abstract
Efflux pumps are a key component in bacteria's ability to gain resistance to antibiotics. In addition to increasing efflux, new research has suggested that the antibiotic, tetracycline, may have larger impacts on bacterial membranes. Using second harmonic scattering, we monitor the transport of two small molecules across the membranes of different Gram-positive bacteria. By comparing our results to a simple kinetic model, we find evidence for changes in influx and efflux across both bacterial species. These changes, however, are probe-dependent, opening new questions about the localization of the drug's effects and the specificity of the efflux pumps involved.
Collapse
Affiliation(s)
- Eleanor F. Page
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Mikala F. Blackmon
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
3
|
Whittle EE, Orababa O, Osgerby A, Siasat P, Element SJ, Blair JMA, Overton TW. Efflux pumps mediate changes to fundamental bacterial physiology via membrane potential. mBio 2024; 15:e0237024. [PMID: 39248573 PMCID: PMC11481890 DOI: 10.1128/mbio.02370-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
Efflux pumps are well known to be an important mechanism for removing noxious substances such as antibiotics from bacteria. Given that many antibiotics function by accumulating inside bacteria, efflux pumps contribute to resistance. Efflux pump inactivation is a potential strategy to combat antimicrobial resistance, as bacteria would not be able to pump out antibiotics. We recently discovered that the impact of loss of efflux function is only apparent in actively growing cells. We demonstrated that the global transcriptome of Salmonella Typhimurium is drastically altered during slower growth leading to stationary-phase cells having a remodeled, less permeable envelope that prevents antibiotics entering the cell. Here, we investigated the effects of deleting the major efflux pump of Salmonella Typhimurium, AcrB, on global gene transcription across growth. We revealed that an acrB knockout entered stationary phase later than the wild-type strain SL1344 and displayed increased and prolonged expression of genes responsible for anaerobic energy metabolism. We devised a model linking efflux and membrane potential, whereby deactivation of AcrB prevents influx of protons across the inner membrane and thereby hyperpolarization. Knockout or deactivation of AcrB was demonstrated to increase membrane potential. We propose that the global transcription regulator ArcBA senses changes to the redox state of the quinol pool (linked to the membrane potential of the bacterium) and coordinates the shift from exponential to stationary phase via the key master regulators RpoS, Rsd, and Rmf. Inactivation of efflux pumps therefore influences the fundamental physiology of Salmonella, with likely impacts on multiple phenotypes.IMPORTANCEWe demonstrate for the first time that deactivation of efflux pumps brings about changes to gross bacterial physiology and metabolism. Rather than simply being a response to noxious substances, efflux pumps appear to play a key role in maintenance of membrane potential and thereby energy metabolism. This discovery suggests that efflux pump inhibition or inactivation might have unforeseen positive consequences on antibiotic activity. Given that stationary-phase bacteria are more resistant to antibiotic uptake, late entry into stationary phase would prolong antibiotic accumulation by bacteria. Furthermore, membrane hyperpolarization could result in increased generation of reactive species proposed to be important for the activity of some antibiotics. Finally, changes in gross physiology could also explain the decreased virulence of efflux mutants.
Collapse
Affiliation(s)
- Emily E. Whittle
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Oluwatosin Orababa
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Alexander Osgerby
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Pauline Siasat
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Sarah J. Element
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Jessica M. A. Blair
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Tim W. Overton
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Aroca Molina KJ, Gutiérrez SJ, Benítez-Campo N, Correa A. Genomic Differences Associated with Resistance and Virulence in Pseudomonas aeruginosa Isolates from Clinical and Environmental Sites. Microorganisms 2024; 12:1116. [PMID: 38930498 PMCID: PMC11205572 DOI: 10.3390/microorganisms12061116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 06/28/2024] Open
Abstract
Pseudomonas aeruginosa is a pathogen that causes healthcare-associated infections (HAIs) worldwide. It is unclear whether P. aeruginosa isolated from the natural environment has the same pathogenicity and antimicrobial resistance potential as clinical strains. In this study, virulence- and resistance-associated genes were compared in 14 genomic sequences of clinical and environmental isolates of P. aeruginosa using the VFDB, PATRIC, and CARD databases. All isolates were found to share 62% of virulence genes related to adhesion, motility, secretion systems, and quorum sensing and 72.9% of resistance genes related to efflux pumps and membrane permeability. Our results indicate that both types of isolates possess conserved genetic information associated with virulence and resistance mechanisms regardless of the source. However, none of the environmental isolates were associated with high-risk clones (HRCs). These clones (ST235 and ST111) were found only in clinical isolates, which have an impact on human medical epidemiology due to their ability to spread and persist, indicating a correlation between the clinical environment and increased virulence. The genomic variation and antibiotic susceptibility of environmental isolates of P. aeruginosa suggest potential biotechnological applications if obtained from sources that are under surveillance and investigation to limit the emergence and spread of antibiotic resistant strains.
Collapse
Affiliation(s)
- Kelly J. Aroca Molina
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia; (K.J.A.M.); (S.J.G.)
| | - Sonia Jakeline Gutiérrez
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia; (K.J.A.M.); (S.J.G.)
| | - Neyla Benítez-Campo
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia; (K.J.A.M.); (S.J.G.)
| | - Adriana Correa
- Department of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia;
| |
Collapse
|
5
|
Radi MS, Munro LJ, Salcedo-Sora JE, Kim SH, Feist AM, Kell DB. Understanding Functional Redundancy and Promiscuity of Multidrug Transporters in E. coli under Lipophilic Cation Stress. MEMBRANES 2022; 12:1264. [PMID: 36557171 PMCID: PMC9783932 DOI: 10.3390/membranes12121264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Multidrug transporters (MDTs) are major contributors to microbial drug resistance and are further utilized for improving host phenotypes in biotechnological applications. Therefore, the identification of these MDTs and the understanding of their mechanisms of action in vivo are of great importance. However, their promiscuity and functional redundancy represent a major challenge towards their identification. Here, a multistep tolerance adaptive laboratory evolution (TALE) approach was leveraged to achieve this goal. Specifically, a wild-type E. coli K-12-MG1655 and its cognate knockout individual mutants ΔemrE, ΔtolC, and ΔacrB were evolved separately under increasing concentrations of two lipophilic cations, tetraphenylphosphonium (TPP+), and methyltriphenylphosphonium (MTPP+). The evolved strains showed a significant increase in MIC values of both cations and an apparent cross-cation resistance. Sequencing of all evolved mutants highlighted diverse mutational mechanisms that affect the activity of nine MDTs including acrB, mdtK, mdfA, acrE, emrD, tolC, acrA, mdtL, and mdtP. Besides regulatory mutations, several structural mutations were recognized in the proximal binding domain of acrB and the permeation pathways of both mdtK and mdfA. These details can aid in the rational design of MDT inhibitors to efficiently combat efflux-based drug resistance. Additionally, the TALE approach can be scaled to different microbes and molecules of medical and biotechnological relevance.
Collapse
Affiliation(s)
- Mohammad S. Radi
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Lachlan J. Munro
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Jesus E. Salcedo-Sora
- GeneMill, Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Se Hyeuk Kim
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Adam M. Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
- Department of Bioengineering, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Douglas B. Kell
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
6
|
Poulton NC, Rock JM. Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:997283. [PMID: 36325467 PMCID: PMC9618640 DOI: 10.3389/fcimb.2022.997283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/30/2022] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis (TB) is among the most difficult infections to treat, requiring several months of multidrug therapy to produce a durable cure. The reasons necessitating long treatment times are complex and multifactorial. However, one major difficulty of treating TB is the resistance of the infecting bacterium, Mycobacterium tuberculosis (Mtb), to many distinct classes of antimicrobials. This review will focus on the major gaps in our understanding of intrinsic drug resistance in Mtb and how functional and chemical-genetics can help close those gaps. A better understanding of intrinsic drug resistance will help lay the foundation for strategies to disarm and circumvent these mechanisms to develop more potent antitubercular therapies.
Collapse
|
7
|
Youlden G, McNeil HE, Blair JMA, Jabbari S, King JR. Mathematical Modelling Highlights the Potential for Genetic Manipulation as an Adjuvant to Counter Efflux-Mediated MDR in Salmonella. Bull Math Biol 2022; 84:56. [PMID: 35380320 PMCID: PMC8983579 DOI: 10.1007/s11538-022-01011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/02/2022] [Indexed: 11/18/2022]
Abstract
Bacteria have developed resistance to antibiotics by various mechanisms, notable amongst these is the use of permeation barriers and the expulsion of antibiotics via efflux pumps. The resistance-nodulation-division (RND) family of efflux pumps is found in Gram-negative bacteria and a major contributor to multidrug resistance (MDR). In particular, Salmonella encodes five RND efflux pump systems: AcrAB, AcrAD, AcrEF, MdsAB and MdtAB which have different substrate ranges including many antibiotics. We produce a spatial partial differential equation (PDE) model governing the diffusion and efflux of antibiotic in Salmonella, via these RND efflux pumps. Using parameter fitting techniques on experimental data, we are able to establish the behaviour of multiple wild-type and efflux mutant Salmonella strains, which enables us to produce efflux profiles for each individual efflux pump system. By combining the model with a gene regulatory network (GRN) model of efflux regulation, we simulate how the bacteria respond to their environment. Finally, performing a parameter sensitivity analysis, we look into various different targets to inhibit the efflux pumps. The model provides an in silico framework with which to test these potential adjuvants to counter MDR.
Collapse
Affiliation(s)
- George Youlden
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK.
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Helen E McNeil
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sara Jabbari
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - John R King
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
8
|
A role for the periplasmic adaptor protein AcrA in vetting substrate access to the RND efflux transporter AcrB. Sci Rep 2022; 12:4752. [PMID: 35306531 PMCID: PMC8934357 DOI: 10.1038/s41598-022-08903-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
Tripartite resistance-nodulation-division (RND) efflux pumps, such as AcrAB-TolC of Salmonella Typhimurium, contribute to antibiotic resistance and comprise an inner membrane RND-transporter, an outer membrane factor, and a periplasmic adaptor protein (PAP). The role of the PAP in the assembly and active transport process remains poorly understood. Here, we identify the functionally critical residues involved in PAP-RND-transporter binding between AcrA and AcrB and show that the corresponding RND-binding residues in the closely related PAP AcrE, are also important for its interaction with AcrB. We also report a residue in the membrane-proximal domain of AcrA, that when mutated, differentially affects the transport of substrates utilising different AcrB efflux channels, namely channels 1 and 2. This supports a potential role for the PAP in sensing the substrate-occupied state of the proximal binding pocket of the transporter and substrate vetting. Understanding the PAP’s role in the assembly and function of tripartite RND pumps can guide novel ways to inhibit their function to combat antibiotic resistance.
Collapse
|
9
|
Abstract
For antibiotics with intracellular targets, effective treatment of bacterial infections requires the drug to accumulate to a high concentration inside cells. Bacteria produce a complex cell envelope and possess drug export efflux pumps to limit drug accumulation inside cells. Decreasing cell envelope permeability and increasing efflux pump activity can reduce intracellular accumulation of antibiotics and are commonly seen in antibiotic-resistant strains. Here, we show that the balance between influx and efflux differs depending on bacterial growth phase in Gram-negative bacteria. Accumulation of the fluorescent compound ethidium bromide (EtBr) was measured in Salmonella enterica serovar Typhimurium SL1344 (wild type) and efflux deficient (ΔacrB) strains during growth. In SL1344, EtBr accumulation remained low, regardless of growth phase, and did not correlate with acrAB transcription. EtBr accumulation in the ΔacrB strains was high in exponential phase but dropped sharply later in growth, with no significant difference from that in SL1344 in stationary phase. Low EtBr accumulation in stationary phase was not due to the upregulation of other efflux pumps but instead was due to decreased permeability of the envelope in stationary phase. Transcriptome sequencing (RNA-seq) identified changes in expression of several pathways that remodel the envelope in stationary phase, leading to lower permeability.
Collapse
|
10
|
Alav I, Bavro VN, Blair JMA. Interchangeability of periplasmic adaptor proteins AcrA and AcrE in forming functional efflux pumps with AcrD in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 2021; 76:2558-2564. [PMID: 34278432 PMCID: PMC8446912 DOI: 10.1093/jac/dkab237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/18/2021] [Indexed: 01/20/2023] Open
Abstract
Background Resistance-nodulation-division (RND) efflux pumps are important mediators of antibiotic resistance. RND pumps, including the principal multidrug efflux pump AcrAB-TolC in Salmonella, are tripartite systems with an inner membrane RND transporter, a periplasmic adaptor protein (PAP) and an outer membrane factor (OMF). We previously identified the residues required for binding between the PAP AcrA and the RND transporter AcrB and have demonstrated that PAPs can function with non-cognate transporters. AcrE and AcrD/AcrF are homologues of AcrA and AcrB, respectively. Here, we show that AcrE can interact with AcrD, which does not possess its own PAP, and establish that the residues previously identified in AcrB binding are also involved in AcrD binding. Methods The acrD and acrE genes were expressed in a strain lacking acrABDEF (Δ3RND). PAP residues involved in promiscuous interactions were predicted based on previously defined PAP-RND interactions and corresponding mutations generated in acrA and acrE. Antimicrobial susceptibility of the mutant strains was determined. Results Co-expression of acrD and acrE significantly decreased susceptibility of the Δ3RND strain to AcrD substrates, showing that AcrE can form a functional complex with AcrD. The substrate profile of Salmonella AcrD differed from that of Escherichia coli AcrD. Mutations targeting the previously defined PAP-RND interaction sites in AcrA/AcrE impaired efflux of AcrD-dependent substrates. Conclusions These data indicate that AcrE forms an efflux-competent pump with AcrD and thus presents an alternative PAP for this pump. Mutagenesis of the conserved RND binding sites validates the interchangeability of AcrA and AcrE, highlighting them as potential drug targets for efflux inhibition.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
11
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
12
|
Selective Inhibition of Coxiella burnetii Replication by the Steroid Hormone Progesterone. Infect Immun 2020; 88:IAI.00894-19. [PMID: 32928965 PMCID: PMC7671902 DOI: 10.1128/iai.00894-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 09/09/2020] [Indexed: 01/09/2023] Open
Abstract
Coxiella burnetii is a zoonotic bacterial obligate intracellular parasite and the cause of query (Q) fever. During natural infection of female animals, C. burnetii shows tropism for the placenta and is associated with late-term abortion, at which time the pathogen titer in placental tissue can exceed one billion bacteria per gram. During later stages of pregnancy, placental trophoblasts serve as the major source of progesterone, a steroid hormone known to affect the replication of some pathogens. During infection of placenta-derived JEG-3 cells, C. burnetii showed sensitivity to progesterone but not the immediate precursor pregnenolone or estrogen, another major mammalian steroid hormone. Using host cell-free culture, progesterone was determined to have a direct inhibitory effect on C. burnetii replication. Synergy between the inhibitory effect of progesterone and the efflux pump inhibitors verapamil and 1-(1-naphthylmethyl)-piperazine is consistent with a role for efflux pumps in preventing progesterone-mediated inhibition of C. burnetii activity. The sensitivity of C. burnetii to progesterone, but not structurally related molecules, is consistent with the ability of progesterone to influence pathogen replication in progesterone-producing tissues.
Collapse
|
13
|
Strain-specific anti-biofilm and antibiotic-potentiating activity of 3',4'-difluoroquercetin. Sci Rep 2020; 10:14162. [PMID: 32843653 PMCID: PMC7447797 DOI: 10.1038/s41598-020-71025-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
Antibacterial properties of 3',4'-difluoroquercetin (di-F-Q), a fluorine-substituted stable quercetin derivative, were investigated. Even though di-F-Q itself did not show interesting antibacterial activity, treatment of the Staphylococcus aureus strains with di-F-Q resulted in a dose-dependent reduction in biofilm formation with IC50 values of 1.8 ~ 5.3 mg/L. Also, the antibacterial activity of ceftazidime (CAZ) against carbapenem-resistant Pseudomonas aeruginosa (CRPA) showed eightfold decrease upon combination with di-F-Q. Assessment of the antimicrobial activity of CAZ in combination with di-F-Q against 50 clinical isolates of P. aeruginosa confirmed 15.7% increase in the percentages of susceptible P. aeruginosa isolates upon addition of di-F-Q to CAZ. Further mechanistic studies revealed that di-F-Q affected the antibiotics efflux system in CRPA but not the β-lactamase activity. Thus, di-F-Q was almost equally effective as carbonyl cyanide m-chlorophenyl hydrazine in inhibiting antibiotic efflux by P. aeruginosa. In vivo evaluation of the therapeutic efficacy of CAZ-(di-F-Q) combination against P. aeruginosa showed 20% of the mice treated with CAZ-(di-F-Q) survived after 7 days in IMP carbapenemase-producing multidrug-resistant P. aeruginosa infection group while no mice treated with CAZ alone survived after 2 days. Taken together, di-F-Q demonstrated unique strain-specific antimicrobial properties including anti-biofilm and antibiotic-potentiating activity against S. aureus and P. aeruginosa, respectively.
Collapse
|
14
|
Marshall RL, Bavro VN. Mutations in the TolC Periplasmic Domain Affect Substrate Specificity of the AcrAB-TolC Pump. Front Mol Biosci 2020; 7:166. [PMID: 32850959 PMCID: PMC7396618 DOI: 10.3389/fmolb.2020.00166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
TolC and the other members of the outer membrane factor (OMF) family are outer membrane proteins forming trimeric channels that serve as a conduit for most actively effluxed substrates in Gram-negative bacteria by providing a key component in a multitude of tripartite efflux-pumps. Current models of tripartite pump assembly ascribe substrate selection to the inner-membrane transporter and periplasmic-adapter protein (PAP) assembly, suggesting that TolC is a passive, non-selective channel. While the membrane-embedded portion of the protein adopts a porin-like fold, the periplasmic domain of TolC presents a unique "alpha-barrel" architecture. This alpha-barrel consists of pseudo-continuous α-helices forming curved coiled-coils, whose tips form α-helical hairpins, relaxation of which results in a transition of TolC from a closed to an open-aperture state allowing effective efflux of substrates through its channel. Here, we analyzed the effects of site-directed mutations targeting the alpha-barrel of TolC, of the principal tripartite efflux-pump Escherichia coli AcrAB-TolC, on the activity and specificity of efflux. Live-cell functional assays with these TolC mutants revealed that positions both at the periplasmic tip of, and partway up the TolC coiled-coil alpha-barrel domain are involved in determining the functionality of the complex. We report that mutations affecting the electrostatic properties of the channel, particularly the D371V mutation, significantly impact growth even in the absence of antibiotics, causing hyper-susceptibility to all tested efflux-substrates. These results suggest that inhibition of TolC functionality is less well-tolerated than deletion of tolC, and such inhibition may have an antibacterial effect. Significantly and unexpectedly, we identified antibiotic-specific phenotypes associated with novel TolC mutations, suggesting that substrate specificity may not be determined solely by the transporter protein or the PAP, but may reside at least partially with the TolC-channel. Furthermore, some of the effects of mutations are difficult to reconcile with the currently prevalent tip-to-tip model of PAP-TolC interaction due to their location higher-up on the TolC alpha-barrel relative to the proposed PAP-docking sites. Taken together our results suggest a possible new role for TolC in vetting of efflux substrates, alongside its established role in tripartite complex assembly.
Collapse
Affiliation(s)
- Robert L. Marshall
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Vassiliy N. Bavro
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
15
|
McNeil HE, Alav I, Torres RC, Rossiter AE, Laycock E, Legood S, Kaur I, Davies M, Wand M, Webber MA, Bavro VN, Blair JMA. Identification of binding residues between periplasmic adapter protein (PAP) and RND efflux pumps explains PAP-pump promiscuity and roles in antimicrobial resistance. PLoS Pathog 2019; 15:e1008101. [PMID: 31877175 PMCID: PMC6975555 DOI: 10.1371/journal.ppat.1008101] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2020] [Accepted: 09/20/2019] [Indexed: 11/19/2022] Open
Abstract
Active efflux due to tripartite RND efflux pumps is an important mechanism of clinically relevant antibiotic resistance in Gram-negative bacteria. These pumps are also essential for Gram-negative pathogens to cause infection and form biofilms. They consist of an inner membrane RND transporter; a periplasmic adaptor protein (PAP), and an outer membrane channel. The role of PAPs in assembly, and the identities of specific residues involved in PAP-RND binding, remain poorly understood. Using recent high-resolution structures, four 3D sites involved in PAP-RND binding within each PAP protomer were defined that correspond to nine discrete linear binding sequences or "binding boxes" within the PAP sequence. In the important human pathogen Salmonella enterica, these binding boxes are conserved within phylogenetically-related PAPs, such as AcrA and AcrE, while differing considerably between divergent PAPs such as MdsA and MdtA, despite overall conservation of the PAP structure. By analysing these binding sequences we created a predictive model of PAP-RND interaction, which suggested the determinants that may allow promiscuity between certain PAPs, but discrimination of others. We corroborated these predictions using direct phenotypic data, confirming that only AcrA and AcrE, but not MdtA or MsdA, can function with the major RND pump AcrB. Furthermore, we provide functional validation of the involvement of the binding boxes by disruptive site-directed mutagenesis. These results directly link sequence conservation within identified PAP binding sites with functional data providing mechanistic explanation for assembly of clinically relevant RND-pumps and explain how Salmonella and other pathogens maintain a degree of redundancy in efflux mediated resistance. Overall, our study provides a novel understanding of the molecular determinants driving the RND-PAP recognition by bridging the available structural information with experimental functional validation thus providing the scientific community with a predictive model of pump-contacts that could be exploited in the future for the development of targeted therapeutics and efflux pump inhibitors.
Collapse
Affiliation(s)
- Helen E. McNeil
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | - Amanda E. Rossiter
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Eve Laycock
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Simon Legood
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Inderpreet Kaur
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Matthew Davies
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Matthew Wand
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Mark A. Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Vassiliy N. Bavro
- School of Life Sciences, University of Essex, Colchester, United Kingdom
- * E-mail: (VNB); (JMAB)
| | - Jessica M. A. Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail: (VNB); (JMAB)
| |
Collapse
|
16
|
Wang J, Jiao H, Meng J, Qiao M, Du H, He M, Ming K, Liu J, Wang D, Wu Y. Baicalin Inhibits Biofilm Formation and the Quorum-Sensing System by Regulating the MsrA Drug Efflux Pump in Staphylococcus saprophyticus. Front Microbiol 2019; 10:2800. [PMID: 31921008 PMCID: PMC6915091 DOI: 10.3389/fmicb.2019.02800] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus saprophyticus (S. saprophyticus) is one of the main pathogens that cause serious infection due to its acquisition of antibiotic resistance. The efflux pump decreases antibiotic abundance, and biofilm compromises the penetration of antibiotics. It has been reported that baicalin is a potential agent to inhibit efflux pumps, biofilm formation, and quorum-sensing systems. The purpose of this study was to investigate whether baicalin can inhibit S. saprophyticus biofilm formation and the quorum-sensing system by inhibiting the MsrA efflux pump. First, the mechanism of baicalin inhibiting efflux was investigated by the ethidium bromide (EtBr) efflux assay, measurement of ATP content, and pyruvate kinase (PK) activities. These results revealed that baicalin significantly reduced the efflux of EtBr, the ATP content, and the activity of PK. Moreover, its role in biofilm formation and the agr system was studied by crystal violet staining, confocal laser scanning microscopy, scanning electron microscopy, and real-time polymerase chain reaction. These results showed that baicalin decreased biofilm formation, inhibited bacterial aggregation, and downregulated mRNA transcription levels of the quorum-sensing system regulators agrA, agrC, RNAIII, and sarA. Correlation analysis indicated that there was a strong positive correlation between the efflux pump and biofilm formation and the agr system. We demonstrate for the first time that baicalin inhibits biofilm formation and the agr quorum-sensing system by inhibiting the efflux pump in S. saprophyticus. Therefore, baicalin is a potential therapeutic agent for S. saprophyticus biofilm-associated infections.
Collapse
Affiliation(s)
- Jinli Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haihong Jiao
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production & Construction Corps, College of Animal Science, Tarim University, Alar, China
| | - Jinwu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingyu Qiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongxu Du
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Miao He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ke Ming
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Deyun Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yi Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Whittle EE, Legood SW, Alav I, Dulyayangkul P, Overton TW, Blair JMA. Flow Cytometric Analysis of Efflux by Dye Accumulation. Front Microbiol 2019; 10:2319. [PMID: 31636625 PMCID: PMC6787898 DOI: 10.3389/fmicb.2019.02319] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/23/2019] [Indexed: 11/13/2022] Open
Abstract
Gram-negative infections are increasingly difficult to treat because of their impermeable outer membranes (OM) and efflux pumps which maintain a low intracellular accumulation of antibiotics within cells. Historically, measurement of accumulation of drugs or dyes within Gram-negative cells has concentrated on analyzing whole bacterial populations. Here, we have developed a method to measure the intracellular accumulation of ethidium bromide, a fluorescent DNA intercalating dye, in single cells using flow cytometry. Bacterial cells were stained with SYTOTM 84 to easily separate cells from background cell debris. Ethidium bromide fluorescence was then measured within the SYTOTM 84 positive population to measure accumulation. In S. Typhimurium SL1344, ethidium bromide accumulation was low, however, in a number of efflux mutants, accumulation of ethidium bromide increased more than twofold, comparable to previous whole population analysis of accumulation. We demonstrate simultaneous measurement of ethidium bromide accumulation and GFP allowing quantification of gene expression or other facets of phenotype in single cells. In addition, we show here that this assay can be adapted for use with efflux inhibitors, with both Gram-negative and Gram-positive bacteria, and with other fluorescent substrates with different fluorescence spectra.
Collapse
Affiliation(s)
- Emily E Whittle
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Simon W Legood
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ilyas Alav
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Punyawee Dulyayangkul
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Cheng YH, Lin TL, Lin YT, Wang JT. A putative RND-type efflux pump, H239_3064, contributes to colistin resistance through CrrB in Klebsiella pneumoniae. J Antimicrob Chemother 2019; 73:1509-1516. [PMID: 29506266 PMCID: PMC5961088 DOI: 10.1093/jac/dky054] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/27/2018] [Indexed: 12/20/2022] Open
Abstract
Background Colistin is one of the last-resort antibiotics used to treat carbapenem-resistant Klebsiella pneumoniae infection. Our previous studies indicated that clinical strains encoding CrrB with amino acid substitutions exhibited higher colistin resistance (MICs ≥512 mg/L) than did colistin-resistant strains encoding mutant MgrB, PmrB or PhoQ. Objectives CrrAB may regulate another unknown mechanism(s) contributing to colistin resistance, besides modifications of LPS with 4-amino-4-deoxy-l-arabinose and phosphoethanolamine. Methods To identify these potential unknown mechanism(s), a transposon mutant library of A4528 crrB(N141I) was constructed. Loci that might contribute to colistin resistance and were regulated by crrB were confirmed by deletion and complementation experiments. Results Screening of 2976 transposon mutants identified 47 mutants in which the MICs of colistin were significantly decreased compared with that for the parent. Besides crrAB, crrC and pmrHFIJKLM operons, these 47 transposon insertion mutants included another 13 loci. Notably, transcript levels of one of these insertion targets, H239_3064 (encoding a putative RND-type efflux pump), were significantly increased in A4528 crrB(N141I) compared with the A4528 parent strain. Deletion of H239_3064 in the A4528 crrB(N141I) background resulted in an 8-fold decrease in the MIC of colistin; complementation of the deletion mutant with H239_3064 restored resistance to colistin. Susceptibilities of A4528-derived strains to other antibiotics were also tested. Mutations of crrB resulted in decreased susceptibility to tetracycline and tigecycline, and deletion of H239_3064 in A4528 crrB(N141I) attenuated this phenomenon. Conclusions This study demonstrated that missense mutations of K. pneumoniae crrB lead to increased expression of H239_3064, leading in turn to decreased susceptibility to colistin, tetracycline and tigecycline.
Collapse
Affiliation(s)
- Yi-Hsiang Cheng
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
19
|
Mueller EA, Egan AJ, Breukink E, Vollmer W, Levin PA. Plasticity of Escherichia coli cell wall metabolism promotes fitness and antibiotic resistance across environmental conditions. eLife 2019; 8:40754. [PMID: 30963998 PMCID: PMC6456298 DOI: 10.7554/elife.40754] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 03/23/2019] [Indexed: 11/13/2022] Open
Abstract
Although the peptidoglycan cell wall is an essential structural and morphological feature of most bacterial cells, the extracytoplasmic enzymes involved in its synthesis are frequently dispensable under standard culture conditions. By modulating a single growth parameter-extracellular pH-we discovered a subset of these so-called 'redundant' enzymes in Escherichia coli are required for maximal fitness across pH environments. Among these pH specialists are the class A penicillin binding proteins PBP1a and PBP1b; defects in these enzymes attenuate growth in alkaline and acidic conditions, respectively. Genetic, biochemical, and cytological studies demonstrate that synthase activity is required for cell wall integrity across a wide pH range and influences pH-dependent changes in resistance to cell wall active antibiotics. Altogether, our findings reveal previously thought to be redundant enzymes are instead specialized for distinct environmental niches. This specialization may ensure robust growth and cell wall integrity in a wide range of conditions. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Elizabeth A Mueller
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Alexander Jf Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
20
|
Kim HW, Rhee MS. Novel Antibiotic Testing Approaches Reveal Reduced Antibiotic Efficacy Against Shiga Toxin-Producing Escherichia coli O157:H7 Under Simulated Microgravity. Front Microbiol 2019; 9:3214. [PMID: 30619237 PMCID: PMC6308135 DOI: 10.3389/fmicb.2018.03214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
As a foodborne and environmental pathogen, Shiga toxin-producing Escherichia coli O157:H7 could pose a health threat to immunocompromised astronauts during a space mission. In this study, novel approaches, including real-time testing and direct evaluation of resistance mechanisms, were used to evaluate antibiotic efficacy against E. coli O157:H7 under low-shear modeled microgravity (LSMMG) produced using a rotary cell culture system. When compared with normal gravity (NG), bacterial growth was increased under LSMMG in the presence of sub-inhibitory nalidixic acid concentrations and there was an accompanying up-regulation of stress-related genes. LSMMG also induced transcriptional changes of the virulence genes stx1 and stx2, highlighting the potential risk of inappropriate antibiotic use during a spaceflight. The degree of bacterial cell damage induced by the antibiotics was reduced under LSMMG, suggesting low induction of reactive oxygen species. Efflux pumps were also shown to play an important role in these responses. Increased cell filamentation was observed under LSMMG upon ampicillin treatment, possibly reflecting a protective mechanism against exposure to antibiotics. These observations indicate that, in the presence of antibiotics, the survival of E. coli O157:H7 is greater under LSMMG than under NG, indicating that antibiotic therapies may need to be adjusted during space missions.
Collapse
Affiliation(s)
- Hye Won Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
21
|
Chetri S, Dolley A, Bhowmik D, Chanda DD, Chakravarty A, Bhattacharjee A. Transcriptional Response of AcrEF-TolC against Fluoroquinolone and Carbapenem in Escherichia coli of Clinical Origin. Indian J Med Microbiol 2018; 36:537-540. [DOI: 10.4103/ijmm.ijmm_18_308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Zhang CZ, Chang MX, Yang L, Liu YY, Chen PX, Jiang HX. Upregulation of AcrEF in Quinolone Resistance Development inEscherichia coliWhen AcrAB-TolC Function Is Impaired. Microb Drug Resist 2018; 24:18-23. [DOI: 10.1089/mdr.2016.0207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chuan-Zhen Zhang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Man-Xia Chang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Lei Yang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Yan-Yan Liu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Pin-Xian Chen
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Hong-Xia Jiang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| |
Collapse
|
23
|
Miladi H, Zmantar T, Kouidhi B, Al Qurashi YMA, Bakhrouf A, Chaabouni Y, Mahdouani K, Chaieb K. Synergistic effect of eugenol, carvacrol, thymol, p-cymene and γ-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria. Microb Pathog 2017; 112:156-163. [DOI: 10.1016/j.micpath.2017.09.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
|
24
|
Bay DC, Stremick CA, Slipski CJ, Turner RJ. Secondary multidrug efflux pump mutants alter Escherichia coli biofilm growth in the presence of cationic antimicrobial compounds. Res Microbiol 2016; 168:208-221. [PMID: 27884783 DOI: 10.1016/j.resmic.2016.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/30/2022]
Abstract
Escherichia coli possesses many secondary active multidrug resistance transporters (MDTs) that confer overlapping substrate resistance to a broad range of antimicrobials via proton and/or sodium motive force. It is uncertain whether redundant MDTs uniquely alter cell survival when cultures grow planktonically or as biofilms. In this study, the planktonic and biofilm growth and antimicrobial resistance of 13 E. coli K-12 single MDT gene deletion strains in minimal and rich media were determined. Antimicrobial tolerance to tetracycline, tobramycin and benzalkonium were also compared for each ΔMDT strain. Four E. coli MDT families were represented in this study: resistance nodulation and cell division members acrA, acrB, acrD, acrE, acrF and tolC; multidrug and toxin extruder mdtK; major facilitator superfamily emrA and emrB; and small multidrug resistance members emrE, sugE, mdtI and mdtJ. Deletions of multipartite efflux system genes acrB, acrE and tolC resulted in significant reductions in both planktonic and biofilm growth phenotypes and enhanced antimicrobial susceptibilities. The loss of remaining MDT genes produced similar or enhanced (acrD, acrE, emrA, emrB, mdtK, emrE and mdtJ) biofilm growth and antimicrobial resistance. ΔMDT strains with enhanced antimicrobial tolerance also enhanced biofilm biomass. These findings suggest that many redundant MDTs regulate biofilm formation and drug tolerance.
Collapse
Affiliation(s)
- Denice C Bay
- University of Manitoba, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Manitoba, Canada.
| | - Carol A Stremick
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Carmine J Slipski
- University of Manitoba, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Manitoba, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Zmantar T, Miladi H, Kouidhi B, Chaabouni Y, Ben Slama R, Bakhrouf A, Mahdouani K, Chaieb K. Use of juglone as antibacterial and potential efflux pump inhibitors in Staphylococcus aureus isolated from the oral cavity. Microb Pathog 2016; 101:44-49. [PMID: 27816681 DOI: 10.1016/j.micpath.2016.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
Abstract
In this study the minimal inhibitory concentration (MICs) of tetracycline (Tet), erythromycin (Ery) and benzalkonium chloride (BC) in absence and in presence of a sub-MIC of juglone (Jug) were determined. In addition, the Ethidium bromide (EtBr) efflux assay was performed to assess the effect of Jug on EtBr cells accumulation. Our results showed a selective antimicrobial activity of Jug against the tested strains. A synergistic effect of Jug, drugs (Tet and Ery) and disinfectant (BC) was noticed with a reduction rate varied from 2 to 16-fold. In addition, the efflux of EtBr was inhibited depending on the Jug concentration. In the presence of Jug, a decrease in loss of EtBr from bacteria was observed. The concentration inducing 50 % of EtBr efflux inhibition after 15 min was about 182 μg ml-1 for S. aureus ATCC 25923, 236 μg ml-1 for S. aureus B193 and 195 μg ml-1 for S. aureus B456. It appears from this study that Jug may be used as a natural source for resistance-modifying activity in same bacteria.
Collapse
Affiliation(s)
- Tarek Zmantar
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Rue Avicenne, Monastir 5000, Tunisia
| | - Hanene Miladi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Rue Avicenne, Monastir 5000, Tunisia
| | - Bochra Kouidhi
- College of Applied Medical Sciences, Medical Laboratory Department, Yanbu el Bahr, Taibah University, Al Madinah Al Monawarah, Saudi Arabia.
| | - Yassine Chaabouni
- Laboratory of Bacteriology and Molecular Biology, Hôspital of Ibn El Jazzar, Kairouan, Tunisia
| | - Rihab Ben Slama
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Rue Avicenne, Monastir 5000, Tunisia
| | - Amina Bakhrouf
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Rue Avicenne, Monastir 5000, Tunisia
| | - Kacem Mahdouani
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Rue Avicenne, Monastir 5000, Tunisia; Laboratory of Bacteriology and Molecular Biology, Hôspital of Ibn El Jazzar, Kairouan, Tunisia
| | - Kamel Chaieb
- College of Sciences, Biology Department, Yanbu el Bahr, Taibah University, Al Madinah Al Monawarah, Saudi Arabia
| |
Collapse
|
26
|
Miladi H, Zmantar T, Chaabouni Y, Fedhila K, Bakhrouf A, Mahdouani K, Chaieb K. Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens. Microb Pathog 2016; 99:95-100. [DOI: 10.1016/j.micpath.2016.08.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 11/15/2022]
|
27
|
Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence. Front Microbiol 2016; 7:1483. [PMID: 27708632 PMCID: PMC5030252 DOI: 10.3389/fmicb.2016.01483] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/06/2016] [Indexed: 01/24/2023] Open
Abstract
Multidrug efflux pumps can be involved in bacterial resistance to antibiotics at different levels. Some efflux pumps are constitutively expressed at low levels and contribute to intrinsic resistance. In addition, their overexpression may allow higher levels of resistance. This overexpression can be transient, in the presence of an effector (phenotypic resistance), or constitutive when mutants in the regulatory elements of the expression of efflux pumps are selected (acquired resistance). Efflux pumps are present in all cells, from human to bacteria and are highly conserved, which indicates that they are ancient elements in the evolution of different organisms. Consequently, it has been suggested that, besides antibiotic resistance, bacterial multidrug efflux pumps would likely contribute to other relevant processes of the microbial physiology. In the current article, we discuss some specific examples of the role that efflux pumps may have in the bacterial virulence of animals’ and plants’ pathogens, including the processes of intercellular communication. Based in these evidences, we propose that efflux pumps are at the crossroad between resistance and virulence of bacterial pathogens. Consequently, the comprehensive study of multidrug efflux pumps requires addressing these functions, which are of relevance for the bacterial–host interactions during infection.
Collapse
Affiliation(s)
- Manuel Alcalde-Rico
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Paula Blanco
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
28
|
Abstract
Bacterial multidrug resistance (MDR) efflux pumps are an important mechanism of antibiotic resistance and are required for many pathogens to cause infection. They are also being harnessed to improve microbial biotechnological processes, including biofuel production. Therefore, scientists of many specialties must be able to accurately measure efflux activity. However, myriad methodologies have been described and the most appropriate method is not always clear. Within the scientific literature, many methods are misused or data arising are misinterpreted. The methods for measuring efflux activity can be split into two groups, (i) those that directly measure efflux and (ii) those that measure the intracellular accumulation of a substrate, which is then used to infer efflux activity. Here, we review the methods for measuring efflux and explore the most recent advances in this field, including single-cell or cell-free technologies and mass spectrometry, that are being used to provide more detailed information about efflux pump activity.
Collapse
|
29
|
The Acinetobacter baumannii Two-Component System AdeRS Regulates Genes Required for Multidrug Efflux, Biofilm Formation, and Virulence in a Strain-Specific Manner. mBio 2016; 7:e00430-16. [PMID: 27094331 PMCID: PMC4850262 DOI: 10.1128/mbio.00430-16] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR), causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery. Acinetobacter baumannii is a nosocomial pathogen and is an increasing problem in hospitals worldwide. This organism is often multidrug resistant, can persist in the environment, and forms a biofilm on environmental surfaces and wounds. Overproduction of efflux pumps can allow specific toxic compounds to be pumped out of the cell and can lead to multidrug resistance. This study demonstrates the role of the A. baumannii efflux pump AdeB, and its regulator AdeRS, in multidrug resistance, epithelial cell killing, and biofilm formation. Deletion of the genes encoding these systems led to increased susceptibility to antibiotics, decreased biofilm formation on biotic and abiotic surfaces, and decreased virulence. Our data suggest that inhibition of AdeB could prevent biofilm formation or colonization in patients by A. baumannii and provides a good target for drug discovery.
Collapse
|
30
|
AcrB-AcrA Fusion Proteins That Act as Multidrug Efflux Transporters. J Bacteriol 2015; 198:332-42. [PMID: 26527645 DOI: 10.1128/jb.00587-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The AcrAB-TolC system in Escherichia coli is an intrinsic RND-type multidrug efflux transporter that functions as a tripartite complex of the inner membrane transporter AcrB, the outer membrane channel TolC, and the adaptor protein AcrA. Although the crystal structures of each component of this system have been elucidated, the crystal structure of the whole complex has not been solved. The available crystal structures have shown that AcrB and TolC function as trimers, but the number of AcrA molecules in the complex is now under debate. Disulfide chemical cross-linking experiments have indicated that the stoichiometry of AcrB-AcrA-TolC is 1:1:1; on the other hand, recent cryo-electron microscopy images of AcrAB-TolC suggested a 1:2:1 stoichiometry. In this study, we constructed 1:1-fixed AcrB-AcrA fusion proteins using various linkers. Surprisingly, all the 1:1-fixed linker proteins showed drug export activity under both acrAB-deficient conditions and acrAB acrEF double-pump-knockout conditions regardless of the lengths of the linkers. Finally, we optimized a shorter linker lacking the conformational freedom imparted by the AcrB C terminus. These results suggest that a complex with equal amounts of AcrA and AcrB is sufficient for drug export function. IMPORTANCE The structure and stoichiometry of the RND-type multidrug exporter AcrB-AcrA-TolC complex are still under debate. Recently, electron microscopic images of the AcrB-AcrA-TolC complex have been reported, suggesting a 1:2:1 stoichiometry. However, we report here that the AcrB-AcrA 1:1 fusion protein is active for drug export under acrAB-deficient conditions and also under acrAB acrEF double-deficient conditions, which eliminate the aid of free AcrA and its close homolog AcrE, indicating that the AcrB-AcrA 1:1 stoichiometry is enough for drug export function. In addition, the AcrB-AcrA fusion protein can function without the aid of free AcrA. We believe that these results are very important for considering the structure and mechanism of AcrAB-TolC-mediated multidrug export.
Collapse
|
31
|
Moraxella catarrhalis AcrAB-OprM efflux pump contributes to antimicrobial resistance and is enhanced during cold shock response. Antimicrob Agents Chemother 2015; 59:1886-94. [PMID: 25583725 DOI: 10.1128/aac.03727-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a common pathogen of the human respiratory tract. Multidrug efflux pumps play a major role in antibiotic resistance and virulence in many Gram-negative organisms. In the present study, the role of the AcrAB-OprM efflux pump in antibiotic resistance was investigated by constructing mutants that lack the acrA, acrB, and oprM genes in M. catarrhalis strain O35E. We observed a moderate (1.5-fold) decrease in the MICs of amoxicillin and cefotaxime and a marked (4.7-fold) decrease in the MICs of clarithromycin for acrA, acrB, and oprM mutants in comparison with the wild-type O35E strain. Exposure of the M. catarrhalis strains O35E and 300 to amoxicillin triggered an increased transcription of all AcrAB-OprM pump genes, and exposure of strains O35E, 300, and 415 to clarithromycin enhanced the expression of acrA and oprM mRNA. Inactivation of the AcrAB-OprM efflux pump genes demonstrated a decreased ability to invade epithelial cells compared to the parental strain, suggesting that acrA, acrB, and oprM are required for efficient invasion of human pharyngeal epithelial cells. Cold shock increases the expression of AcrAB-OprM efflux pump genes in all three M. catarrhalis strains tested. Increased expression of AcrAB-OprM pump genes after cold shock leads to a lower accumulation of Hoechst 33342 (H33342), a substrate of AcrAB-OprM efflux pumps, indicating that cold shock results in increased efflux activity. In conclusion, the AcrAB-OprM efflux pump appears to play a role in the antibiotic resistance and virulence of M. catarrhalis and is involved in the cold shock response.
Collapse
|
32
|
Rensch U, Nishino K, Klein G, Kehrenberg C. Salmonella enterica serovar Typhimurium multidrug efflux pumps EmrAB and AcrEF support the major efflux system AcrAB in decreased susceptibility to triclosan. Int J Antimicrob Agents 2014; 44:179-80. [PMID: 25059442 DOI: 10.1016/j.ijantimicag.2014.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Ulrike Rensch
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Kunihiko Nishino
- Laboratory of Microbiology and Infectious Diseases, Institute of Scientific and Industrial Research, Osaka University, Japan
| | - Günter Klein
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Corinna Kehrenberg
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany.
| |
Collapse
|