1
|
Calvo A, Moreno E, Aldalur I, Sanmartín C, Larrea E, González-Peñas E, Irache JM, Espuelas S. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1072-1081. [PMID: 35086139 PMCID: PMC9000957 DOI: 10.1093/jac/dkac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/18/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives More effective topical treatments remain an unmet need for the localized forms of cutaneous leishmaniasis (CL). The aim of this study was to evaluate the efficacy and safety of a topical berberine cream in BALB/c mice infected with Leishmania major parasites. Methods A cream containing 0.5% berberine-β-glycerophosphate salt and 2.5% menthol was prepared. Its physicochemical and stability properties were determined. The cream was evaluated for its capacity to reduce lesion size and parasitic load as well as to promote wound healing after twice-a-day administration for 35 days. Clinical biochemical profile was used for estimating off-target effects. In vitro time-to-kill curves in L. major-infected macrophages and skin and plasma pharmacokinetics were determined, aiming to establish pharmacokinetic/pharmacodynamic relationships. Results The cream was stable at 40°C for 3 months and at 4°C for at least 8 months. It was able to halt lesion progression in all treated mice. At the end of treatment, parasite load in the skin was reduced by 99.9% (4 log) and genes involved in the wound healing process were up-regulated compared with untreated mice. The observed effects were higher than expected from in vitro time-to-kill kinetic and plasma berberine concentrations, which ranged between 0.07 and 0.22 μM. Conclusions The twice-a-day administration of a topical berberine cream was safe, able to stop parasite progression and improved the appearance of skin CL lesions. The relationship between drug plasma levels and in vivo effect was unclear.
Collapse
Affiliation(s)
- Alba Calvo
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - Esther Moreno
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Navarra Institute for Health Research, IdisNA, Pamplona, Spain
| | - Irati Aldalur
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - Carmen Sanmartín
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Navarra Institute for Health Research, IdisNA, Pamplona, Spain
| | - Esther Larrea
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Navarra Institute for Health Research, IdisNA, Pamplona, Spain
| | - Elena González-Peñas
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - Juan Manuel Irache
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Navarra Institute for Health Research, IdisNA, Pamplona, Spain
| | - Socorro Espuelas
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Navarra Institute for Health Research, IdisNA, Pamplona, Spain
- Corresponding author. E-mail:
| |
Collapse
|
2
|
Zulfiqar B, Avery VM. Assay development in leishmaniasis drug discovery: a comprehensive review. Expert Opin Drug Discov 2021; 17:151-166. [PMID: 34818139 DOI: 10.1080/17460441.2022.2002843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cutaneous, muco-cutaneous and visceral leishmaniasis occur due to an infection with the protozoan parasite Leishmania. The current therapeutic options are limited mainly due to extensive toxicity, emerging resistance and variation in efficacy based on species and strain of the Leishmania parasite. There exists a high unmet medical need to identify new chemical starting points for drug discovery to tackle the disease. AREAS COVERED The authors have highlighted the recent progress, limitations and successes achieved in assay development for leishmaniasis drug discovery. EXPERT OPINION It is true that sophisticated and robust phenotypic in vitro assays have been developed during the last decade, however limitations and challenges remain with respect to variation in activity reported between different research groups and success in translating in vitro outcomes in vivo. The variability is not only due to strain and species differences but also a lack of well-defined criteria and assay conditions, e.g. culture media, host cell type, assay formats, parasite form used, multiplicity of infection and incubation periods. Thus, there is an urgent need for more physiologically relevant assays that encompass multi-species phenotypic approaches to identify new chemical starting points for leishmaniasis drug discovery.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Discovery Biology, Griffith University, Brisbane, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith University, Brisbane, Australia.,Discovery Biology, Griffith University Drug Discovery Programme for Cancer Therapeutics, Brisbane, Australia.,School of Environment and Sciences, Griffith University, Brisbane, Australia
| |
Collapse
|
3
|
Bulté D, Van Bockstal L, Dirkx L, Van den Kerkhof M, De Trez C, Timmermans JP, Hendrickx S, Maes L, Caljon G. Miltefosine enhances infectivity of a miltefosine-resistant Leishmania infantum strain by attenuating its innate immune recognition. PLoS Negl Trop Dis 2021; 15:e0009622. [PMID: 34292975 PMCID: PMC8330912 DOI: 10.1371/journal.pntd.0009622] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/03/2021] [Accepted: 07/01/2021] [Indexed: 01/08/2023] Open
Abstract
Background Miltefosine (MIL) is currently the only oral drug available to treat visceral leishmaniasis but its use as first-line monotherapy has been compromised by an increasing treatment failure. Despite the scarce number of resistant clinical isolates, MIL-resistance by mutations in a single aminophospholipid transporter gene can easily be selected in a laboratory environment. These mutations result in a reduced survival in the mammalian host, which can partially be restored by exposure to MIL, suggesting a kind of drug-dependency. Methodology/Principal findings To enable a combined study of the infection dynamics and underlying immunological events for differential in vivo survival, firefly luciferase (PpyRE9) / red fluorescent protein (DsRed) double-reporter strains were generated of MIL-resistant (MIL-R) and syngeneic MIL-sensitive (MIL-S) Leishmania infantum. Results in C57Bl/6 and BALB/c mice show that MIL-R parasites induce an increased innate immune response that is characterized by enhanced influx and infection of neutrophils, monocytes and dendritic cells in the liver and elevated serum IFN-γ levels, finally resulting in a less efficient establishment in liver macrophages. The elevated IFN-γ levels were shown to originate from an increased response of hepatic NK and NKT cells to the MIL-R parasites. In addition, we demonstrated that MIL could increase the in vivo fitness of MIL-R parasites by lowering NK and NKT cell activation, leading to a reduced IFN-γ production. Conclusions/Significance Differential induction of innate immune responses in the liver was found to underlie the attenuated phenotype of a MIL-R parasite and its peculiar feature of drug-dependency. The impact of MIL on hepatic NK and NKT activation and IFN-γ production following recognition of a MIL-R strain indicates that this mechanism may sustain infections with resistant parasites and contribute to treatment failure. Visceral leishmaniasis is a neglected tropical disease that is fatal if left untreated. Miltefosine is currently the only oral drug available but is increasingly failing to cure patients, resulting in its discontinuation as first-line drug in some endemic areas. To understand these treatment failures, we investigated the complex interplay of the parasite with the host immune system in the presence and absence of miltefosine. Our data indicate that miltefosine-resistant Leishmania parasites become severely hampered in their in vivo infectivity, which could be attributed to the induction of a pronounced innate immune response. Interestingly, the infection deficit was partially restored in the presence of miltefosine. Our results further indicate that miltefosine can exacerbate infections with resistant parasites by reducing innate immune recognition. This study provides new insights into the complex interplay between parasite, drug and host and discloses an immune-related mechanism of treatment failure.
Collapse
Affiliation(s)
- Dimitri Bulté
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Lieselotte Van Bockstal
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Laura Dirkx
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Magali Van den Kerkhof
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Carl De Trez
- Vrije Universiteit Brussel, Laboratory for Cellular and Molecular Immunology (CMIM), Brussels, Belgium
| | - Jean-Pierre Timmermans
- University of Antwerp, Department of Veterinary Sciences, Laboratory of Cell biology & Histology, Wilrijk, Belgium
| | - Sarah Hendrickx
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Louis Maes
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Guy Caljon
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
- * E-mail:
| |
Collapse
|
4
|
Calvo A, Moreno E, Larrea E, Sanmartín C, Irache JM, Espuelas S. Berberine-Loaded Liposomes for the Treatment of Leishmania infantum-Infected BALB/c Mice. Pharmaceutics 2020; 12:pharmaceutics12090858. [PMID: 32916948 PMCID: PMC7558179 DOI: 10.3390/pharmaceutics12090858] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023] Open
Abstract
Berberine (BER)—an anti-inflammatory quaternary isoquinoline alkaloid extracted from plants—has been reported to have a variety of biologic properties, including antileishmanial activity. This work addresses the preparation of BER-loaded liposomes with the aim to prevent its rapid liver metabolism and improve the drug selective delivery to the infected organs in visceral leishmaniasis (VL). BER liposomes (LP-BER) displayed a mean size of 120 nm, negative Z-potential of −38 mV and loaded 6 nmol/μmol lipid. In vitro, the loading of BER in liposomes enhanced its selectivity index more than 7-fold by decreasing its cytotoxicity to macrophages. In mice, LP-BER enhanced drug accumulation in the liver and the spleen. Consequently, the liposomal delivery of the drug reduced parasite burden in the liver and spleen by three and one logarithms (99.2 and 93.5%), whereas the free drug only decreased the infection in the liver by 1-log. The organ drug concentrations—far from IC50 values— indicate that BER immunomodulatory activity or drug metabolites also contribute to the efficacy. Although LP-BER decreased 10-fold—an extremely rapid clearance of the free drug in mice—the value remains very high. Moreover, LP-BER reduced plasma triglycerides levels.
Collapse
Affiliation(s)
- Alba Calvo
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
| | - Esther Moreno
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Esther Larrea
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Sanmartín
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Juan Manuel Irache
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Socorro Espuelas
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: ; Tel.: +34-948-425-600 (ext. 806310)
| |
Collapse
|
5
|
Eberhardt E, Bulté D, Van Bockstal L, Van den Kerkhof M, Cos P, Delputte P, Hendrickx S, Maes L, Caljon G. Miltefosine enhances the fitness of a non-virulent drug-resistant Leishmania infantum strain. J Antimicrob Chemother 2020; 74:395-406. [PMID: 30412253 DOI: 10.1093/jac/dky450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/05/2018] [Indexed: 01/17/2023] Open
Abstract
Objectives Miltefosine is currently the only oral drug for visceral leishmaniasis, and although deficiency in an aminophospholipid/miltefosine transporter (MT) is sufficient to elicit drug resistance, very few naturally miltefosine-resistant (MIL-R) strains have yet been isolated. This study aimed to make a detailed analysis of the impact of acquired miltefosine resistance and miltefosine treatment on in vivo infection. Methods Bioluminescent versions of a MIL-R strain and its syngeneic parental line were generated by integration of the red-shifted firefly luciferase PpyRE9. The fitness of both lines was compared in vitro (growth rate, metacyclogenesis and macrophage infectivity) and in BALB/c mice through non-invasive bioluminescence imaging under conditions with and without drug pressure. Results This study demonstrated a severe fitness loss of MT-deficient parasites, resulting in a complete inability to multiply and cause a typical visceral leishmaniasis infection pattern in BALB/c mice. The observed fitness loss could not be rescued by host immune suppression with cyclophosphamide, whereas episomal reconstitution with a wild-type MT restored parasite virulence, hence linking parasite fitness to MT mutation. Remarkably, in vivo miltefosine treatment or in vitro miltefosine pre-exposure significantly rescued MIL-R parasite virulence. The in vitro pre-exposed MIL-R promastigotes showed a longer and more slender morphology, suggesting an altered membrane composition. Conclusions The profound fitness loss of MT-deficient parasites most likely explains the low frequency of MIL-R clinical isolates. The observation that miltefosine can reverse this phenotype indicates a drug dependency of the MT-deficient parasites and emphasizes the importance of resistance profiling prior to miltefosine administration.
Collapse
Affiliation(s)
- Eline Eberhardt
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Dimitri Bulté
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Lieselotte Van Bockstal
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
6
|
Hendrickx S, Van Bockstal L, Bulté D, Mondelaers A, Aslan H, Rivas L, Maes L, Caljon G. Phenotypic adaptations of Leishmania donovani to recurrent miltefosine exposure and impact on sand fly infection. Parasit Vectors 2020; 13:96. [PMID: 32087758 PMCID: PMC7036194 DOI: 10.1186/s13071-020-3972-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 01/06/2023] Open
Abstract
Background Since the introduction of miltefosine (MIL) as first-line therapy in the kala-azar elimination programme in the Indian subcontinent, treatment failure rates have been increasing. Since parasite infectivity and virulence may become altered upon treatment relapse, this laboratory study assessed the phenotypic effects of repeated in vitro and in vivo MIL exposure. Methods Syngeneic Leishmania donovani lines either or not exposed to MIL were compared for drug susceptibility, rate of promastigote multiplication and metacyclogenesis, macrophage infectivity and behaviour in the sand fly vector, Lutzomyia longipalpis. Results Promastigotes of both in vitro and in vivo MIL-selected strains displayed a slightly reduced drug susceptibility that was associated with a reduced MIL-accumulation linked to a lower copy number (disomic state) of chromosome 13 harboring the miltefosine transporter (LdMT) gene. In vitro selected promastigotes showed a lower rate of metacyclogenesis whereas the in vivo derived promastigotes displayed a moderately increased growth rate. Repeated MIL exposure did neither influence the parasite load nor metacyclogenesis in the sand fly vector. Conclusions Recurrent in vitro and in vivo MIL exposure evokes a number of very subtle phenotypic and genotypic changes which could make promastigotes less susceptible to MIL without attaining full resistance. These changes did not significantly impact on infection in the sand fly vector.![]()
Collapse
Affiliation(s)
- Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium.
| | - Lieselotte Van Bockstal
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Dimitri Bulté
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Annelies Mondelaers
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Hamide Aslan
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Luis Rivas
- Centro de investigaciones Biológicas - CSIC, Madrid, Spain
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
7
|
Espada CR, Magalhães RM, Cruz MC, Machado PR, Schriefer A, Carvalho EM, Hornillos V, Alves JM, Cruz AK, Coelho AC, Uliana SRB. Investigation of the pathways related to intrinsic miltefosine tolerance in Leishmania (Viannia) braziliensis clinical isolates reveals differences in drug uptake. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 11:139-147. [PMID: 30850347 PMCID: PMC6904789 DOI: 10.1016/j.ijpddr.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022]
Abstract
In Brazil, cutaneous leishmaniasis is caused predominantly by L. (V.) braziliensis. The few therapeutic drugs available exhibit several limitations, mainly related to drug toxicity and reduced efficacy in some regions. Miltefosine (MF), the only oral drug available for leishmaniasis treatment, is not widely available and has not yet been approved for human use in Brazil. Our group previously reported the existence of differential susceptibility among L. (V.) braziliensis clinical isolates. In this work, we further characterized three of these isolates of L. (V.) braziliensis chosen because they exhibited the lowest and the highest MF half maximal inhibitory concentrations and were therefore considered less tolerant or more tolerant, respectively. Uptake of MF, and also of phosphocholine, were found to be significantly different in more tolerant parasites compared to the less sensitive isolate, which raised the hypothesis of differences in the MF transport complex Miltefosine Transporter (MT)-Ros3. Although some polymorphisms in those genes were found, they did not correlate with the drug susceptibility phenotype. Drug efflux and compartmentalization were similar in the isolates tested, and amphotericin B susceptibility was retained in MF tolerant parasites, suggesting that increased fitness was also not the basis of observed differences. Transcriptomic analysis revealed that Ros3 mRNA levels were upregulated in the sensitive strain compared to the tolerant ones. Increased mRNA abundance in more tolerant isolates was validated by quantitative PCR. Our results suggest that differential gene expression of the MT transporter complex is the basis of the differential susceptibility in these unselected, naturally occurring parasites. Brazilian L. (V.) braziliensis isolates vary in mitefosine susceptibility. Diminished drug internalization was observed in more tolerant isolates. Drug susceptibility did not correlate with SNPs in MT-Ros3 genes. Drug efflux and compartmentalization were similar in the isolates tested. Increased drug sensitivity is accompanied by Ros3 mRNA upregulation.
Collapse
Affiliation(s)
- Caroline R Espada
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rubens M Magalhães
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mario C Cruz
- Centro de Facilidades para Apoio a Pesquisa, CEFAP-USP, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo R Machado
- Serviço de Imunologia, HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Albert Schriefer
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Edgar M Carvalho
- Serviço de Imunologia, HUPES, Universidade Federal da Bahia, Salvador, Brazil; Centro de Pesquisas Gonçalo Moniz, Fiocruz-Bahia, Salvador, Brazil
| | - Valentín Hornillos
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Sevilla, Spain
| | - João M Alves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Angela K Cruz
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Adriano C Coelho
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Silvia R B Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
Jiménez-Antón MD, García-Calvo E, Gutiérrez C, Escribano MD, Kayali N, Luque-García JL, Olías-Molero AI, Corral MJ, Costi MP, Torrado JJ, Alunda JM. Pharmacokinetics and disposition of miltefosine in healthy mice and hamsters experimentally infected with Leishmania infantum. Eur J Pharm Sci 2018; 121:281-286. [PMID: 29883726 DOI: 10.1016/j.ejps.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/26/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
Abstract
Miltefosine is the only currently available oral drug for treatment of leishmaniasis. However, information on the pharmacokinetics (PK) of miltefosine is relatively scarce in animals. PK parameters and disposition of the molecule was determined in healthy NMRI mice and Syrian hamsters infected and treated with different miltefosine doses and regimens. Long half-life of the molecule was confirmed and differential pattern of accumulation of the drug was observed in analyzed organs in mice and hamster. Long treatment schedules produced miltefosine levels over IC50 value against L. infantum intracellular amastigotes for at least 24 days in spleen and liver of infected hamsters. The observed differential pattern of organ accumulation of the drug in mice and hamster supports the relevance of both species for translational research on chemotherapy of leishmaniasis.
Collapse
Affiliation(s)
- M Dolores Jiménez-Antón
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | - Estefanía García-Calvo
- C.A.I. Espectrometría de Masas, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Cristina Gutiérrez
- C.A.I. Espectrometría de Masas, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Mª D Escribano
- CSI Analítica SL, C. Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Nour Kayali
- C.A.I. Espectrometría de Masas, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - José L Luque-García
- C.A.I. Espectrometría de Masas, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain; Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Ana Isabel Olías-Molero
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | - María J Corral
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | - Maria P Costi
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Juan J Torrado
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - José Mª Alunda
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain.
| |
Collapse
|
9
|
Van den Kerkhof M, Mabille D, Chatelain E, Mowbray CE, Braillard S, Hendrickx S, Maes L, Caljon G. In vitro and in vivo pharmacodynamics of three novel antileishmanial lead series. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:81-86. [PMID: 29425734 PMCID: PMC6114106 DOI: 10.1016/j.ijpddr.2018.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
Objectives Three new chemical series (bicyclic nitroimidazoles, aminopyrazoles and oxaboroles) were selected by Drugs for Neglected Diseases initiative as potential new drug leads for leishmaniasis. Pharmacodynamics studies included both in vitro and in vivo efficacy, cross-resistance profiling against the current antileishmanial reference drugs and evaluation of their cidal activity potential. Methods Efficacy against the reference laboratory strains of Leishmania infantum (MHOM/MA(BE)/67/ITMAP263) and L. donovani (MHOM/ET/67/L82) was evaluated in vitro on intracellular amastigotes and in vivo in the early curative hamster model. Cidal activity was assessed over a period of 15 days in an in vitro ‘time-to-kill’ assay. Cross-resistance was assessed in vitro on a panel of L. infantum strains with different degrees of resistance to either antimony, miltefosine or paromomycin. Results All lead compounds showed potent and selective in vitro activity against the Leishmania strains tested and no cross-resistance could be demonstrated against any of the current antileishmanial drugs. Cidal activity was obtained in vitro for all series within 15 days of exposure with some differences noted between L. donovani and L. infantum. When evaluated in vivo, all lead compounds showed high efficacy and no adverse effects were observed. Conclusions The new lead series were shown to have cidal pharmacodynamic activity. The absence of cross-resistance with any of the current antileishmanial drugs opens possibilities for combination treatment to reduce the likelihood of treatment failures and drug resistance. Good efficacy was evaluated for all series in vitro and in vivo. No cross-resistance towards current anti-leishmanial drugs was observed. Cidal activity was obtained in vitro for all series within 15 days of exposure. Some differences were observed between L. infantum and L. donovani.
Collapse
Affiliation(s)
- M Van den Kerkhof
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - D Mabille
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - E Chatelain
- Drugs for Neglected Disease initiative (DNDi), Geneva, Switzerland
| | - C E Mowbray
- Drugs for Neglected Disease initiative (DNDi), Geneva, Switzerland
| | - S Braillard
- Drugs for Neglected Disease initiative (DNDi), Geneva, Switzerland
| | - S Hendrickx
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - L Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - G Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium.
| |
Collapse
|
10
|
Combined treatment of miltefosine and paromomycin delays the onset of experimental drug resistance in Leishmania infantum. PLoS Negl Trop Dis 2017; 11:e0005620. [PMID: 28505185 PMCID: PMC5444850 DOI: 10.1371/journal.pntd.0005620] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/25/2017] [Accepted: 05/03/2017] [Indexed: 11/29/2022] Open
Abstract
Background Since miltefosine monotherapy against visceral leishmaniasis (VL) caused by Leishmania donovani has been discontinued in the Indian subcontinent due to an increase in the number of treatment failures, single dose liposomal amphotericin B is now advocated as a treatment option of choice. Paromomycin-miltefosine combination therapy can be used as substitute first-line treatment in regions without cold-chain potential. Previous laboratory studies in the closely related species Leishmania infantum have demonstrated that paromomycin monotherapy fairly rapidly selects for resistance producing a phenotype with increased fitness. Given the possible clinical implications of these findings for the current field situation, the present study aimed to identify the potential hazards of paromomycin-miltefosine combination therapy. Principal findings Drug interaction studies using the fixed-ratio isobologram method revealed an indifferent interaction between paromomycin and miltefosine. In hamsters infected with L. infantum, the combination resulted in cumulative efficacy in reducing parasite burdens in the liver, spleen and bone marrow. Selected resistant lines against the single drugs did not display cross-resistance. When the intracellular amastigote stage was repeatedly exposed to the paromomycin-miltefosine combination, either in vitro or in vivo, no significant susceptibility decrease towards either drug was noted. Conclusions These results suggest that implementation of paromomycin-miltefosine combination therapy indeed could represent a safe and affordable treatment option for L. donovani VL as miltefosine appears to overrule the anticipated rapid development of PMM resistance. Liposomal amphotericin B is presently being used as first-line treatment option against visceral leishmaniasis in the Indian subcontinent. However, the need for temperature-controlled transport and storage limits its widespread use in rural areas. Previous studies already suggested that paromomycin-miltefosine combination therapy could be a valuable alternative, side passing some of the disadvantages associated with monotherapy, such as development of drug resistance. As the first reports of miltefosine resistant clinical isolates have already surfaced and paromomycin resistance could be easily induced under laboratory conditions, it remains essential to assess the risk of developing resistance against both drugs upon combination therapy. This study evaluated the efficacy of combined therapy against a Leishmania species closely related to the agent found in the Indian subcontinent, using both in vitro and in vivo models with the aim to select multidrug-resistant species by simultaneous exposure to paromomycin and miltefosine. The combination of both drugs in the hamster model resulted in a cumulative efficacy but did not lead to a significant susceptibility decrease, indicating that paromomycin-miltefosine combination therapy may represent a safe and affordable treatment option for visceral leishmaniasis.
Collapse
|
11
|
Espada CR, Ribeiro-Dias F, Dorta ML, Pereira LIDA, Carvalho EMD, Machado PR, Schriefer A, Yokoyama-Yasunaka JKU, Coelho AC, Uliana SRB. Susceptibility to Miltefosine in Brazilian Clinical Isolates of Leishmania ( Viannia) braziliensis. Am J Trop Med Hyg 2017; 96:656-659. [PMID: 28070006 DOI: 10.4269/ajtmh.16-0811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Leishmania (Viannia) braziliensis is the main causative species of tegumentary leishmaniasis in Brazil. In this study, we evaluated the susceptibility of 16 clinical isolates of L. (V.) braziliensis from different regions of Brazil to miltefosine in vitro. Half-maximal inhibitory concentrations of miltefosine varied from 22.9 to 144.2 μM against promastigotes and from 0.3 to 4.2 μM against intracellular amastigotes. No significant differences were found between isolates of different geographical origins. A clear correlation between the EC50 against promastigotes and amastigotes within each isolate was found. These findings contribute to the evaluation of miltefosine's potential and limitations for the treatment of tegumentary leishmaniasis in Brazil.
Collapse
Affiliation(s)
- Caroline R Espada
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fatima Ribeiro-Dias
- Laboratório de Imunobiologia das Leishmanioses, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Miriam L Dorta
- Laboratório de Imunobiologia das Leishmanioses, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ledice Inácia de Araújo Pereira
- Laboratório de Imunobiologia das Leishmanioses, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Edgar M de Carvalho
- Centro de Pesquisas Gonçalo Moniz, Fiocruz-Bahia, Salvador, Brazil.,Serviço de Imunologia, Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Paulo R Machado
- Serviço de Imunologia, Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Albert Schriefer
- Serviço de Imunologia, Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Jenicer K U Yokoyama-Yasunaka
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Adriano C Coelho
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Silvia R B Uliana
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Abstract
Cutaneous and visceral leishmaniasis are amongst the most devastating infectious diseases of our time, affecting millions of people worldwide. The treatment of these serious diseases rely on a few chemotherapeutic agents, most of which are of parenteral use and induce severe side-effects. Furthermore, rates of treatment failure are high and have been linked to drug resistance in some areas. Here, we reviewed data on current chemotherapy practice in leishmaniasis. Drug resistance and mechanisms of resistance are described as well as the prospects for applying drug combinations for leishmaniasis chemotherapy. It is clear that efforts for discovering new drugs applicable to leishmaniasis chemotherapy are essential. The main aspects on the various steps of drug discovery in the field are discussed.
Collapse
|
13
|
Abstract
For decades antimonials were the drugs of choice for the treatment of visceral
leishmaniasis (VL), but the recent emergence of resistance has made them redundant as
first-line therapy in the endemic VL region in the Indian subcontinent. The application of
other drugs has been limited due to adverse effects, perceived high cost, need for
parenteral administration and increasing rate of treatment failures. Liposomal
amphotericin B (AmB) and miltefosine (MIL) have been positioned as the effective
first-line treatments; however, the number of monotherapy MIL-failures has increased after
a decade of use. Since no validated molecular resistance markers are yet available,
monitoring and surveillance of changes in drug sensitivity and resistance still depends on
standard phenotypic in vitro promastigote or amastigote susceptibility
assays. Clinical isolates displaying defined MIL- or AmB-resistance are still fairly
scarce and fundamental and applied research on resistance mechanisms and dynamics remains
largely dependent on laboratory-generated drug resistant strains. This review addresses
the various challenges associated with drug susceptibility and -resistance monitoring in
VL, with particular emphasis on the choice of strains, susceptibility model selection and
standardization of procedures with specific read-out parameters and well-defined threshold
criteria. The latter are essential to support surveillance systems and safeguard the
limited number of currently available antileishmanial drugs.
Collapse
|