1
|
Identification of FDA Approved Drugs with Antiviral Activity against SARS-CoV-2: A Tale from structure-based drug repurposing to host-cell mechanistic investigation. Biomed Pharmacother 2023; 162:114614. [PMID: 37068330 PMCID: PMC10043961 DOI: 10.1016/j.biopha.2023.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The continuing heavy toll of the COVID-19 pandemic necessitates development of therapeutic options. We adopted structure-based drug repurposing to screen FDA-approved drugs for inhibitory effects against main protease enzyme (Mpro) substrate-binding pocket of SARS-CoV-2 for non-covalent and covalent binding. Top candidates were screened against infectious SARS-CoV-2 in a cell-based viral replication assay. Promising candidates included atovaquone, mebendazole, ouabain, dronedarone, and entacapone, although atovaquone and mebendazole were the only two candidates with IC50s that fall within their therapeutic plasma concentration. Additionally, we performed Mpro assays on the top hits, which demonstrated inhibition of Mpro by dronedarone (IC50 18 µM), mebendazole (IC50 19 µM) and entacapone (IC50 9 µM). Atovaquone showed only modest Mpro inhibition, and thus we explored other potential mechanisms. Although atovaquone is Dihydroorotate dehydrogenase (DHODH) inhibitor, we did not observe inhibition of DHODH at the respective SARS-CoV-2 IC50. Metabolomic profiling of atovaquone treated cells showed dysregulation of purine metabolism pathway metabolite, showing that ecto-5′-nucleotidase (NT5E) is downregulated by atovaquone at concentrations equivalent to its antiviral IC50. Atovaquone and mebendazole are promising candidates targeting SARS-CoV-2, however atovaquone did not significantly inhibit Mpro at therapeutically meaningful concentrations but may inhibit SARS-CoV-2 viral replication by targeting host purine metabolism.
Collapse
|
2
|
Stevens AM, Schafer ES, Li M, Terrell M, Rashid R, Paek H, Bernhardt MB, Weisnicht A, Smith WT, Keogh NJ, Alozie MC, Oviedo HH, Gonzalez AK, Ilangovan T, Mangubat-Medina A, Wang H, Jo E, Rabik CA, Bocchini C, Hilsenbeck S, Ball ZT, Cooper TM, Redell MS. Repurposing Atovaquone as a Therapeutic against Acute Myeloid Leukemia (AML): Combination with Conventional Chemotherapy Is Feasible and Well Tolerated. Cancers (Basel) 2023; 15:cancers15041344. [PMID: 36831684 PMCID: PMC9954468 DOI: 10.3390/cancers15041344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Survival of pediatric AML remains poor despite maximized myelosuppressive therapy. The pneumocystis jiroveci pneumonia (PJP)-treating medication atovaquone (AQ) suppresses oxidative phosphorylation (OXPHOS) and reduces AML burden in patient-derived xenograft (PDX) mouse models, making it an ideal concomitant AML therapy. Poor palatability and limited product formulations have historically limited routine use of AQ in pediatric AML patients. Patients with de novo AML were enrolled at two hospitals. Daily AQ at established PJP dosing was combined with standard AML therapy, based on the Medical Research Council backbone. AQ compliance, adverse events (AEs), ease of administration score (scale: 1 (very difficult)-5 (very easy)) and blood/marrow pharmacokinetics (PK) were collected during Induction 1. Correlative studies assessed AQ-induced apoptosis and effects on OXPHOS. PDX models were treated with AQ. A total of 26 patients enrolled (ages 7.2 months-19.7 years, median 12 years); 24 were evaluable. A total of 14 (58%) and 19 (79%) evaluable patients achieved plasma concentrations above the known anti-leukemia concentration (>10 µM) by day 11 and at the end of Induction, respectively. Seven (29%) patients achieved adequate concentrations for PJP prophylaxis (>40 µM). Mean ease of administration score was 3.8. Correlative studies with AQ in patient samples demonstrated robust apoptosis, OXPHOS suppression, and prolonged survival in PDX models. Combining AQ with chemotherapy for AML appears feasible and safe in pediatric patients during Induction 1 and shows single-agent anti-leukemic effects in PDX models. AQ appears to be an ideal concomitant AML therapeutic but may require intra-patient dose adjustment to achieve concentrations sufficient for PJP prophylaxis.
Collapse
Affiliation(s)
- Alexandra McLean Stevens
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-(832)-824-4824; Fax: +1-(832)-825-1206
| | - Eric S. Schafer
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Minhua Li
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maci Terrell
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raushan Rashid
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hana Paek
- Department of Pharmacy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie B. Bernhardt
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allison Weisnicht
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wesley T. Smith
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Noah J. Keogh
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle C. Alozie
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hailey H. Oviedo
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alan K. Gonzalez
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tamilini Ilangovan
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Haopei Wang
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Eunji Jo
- Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cara A. Rabik
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Claire Bocchini
- Department of Pediatric Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan Hilsenbeck
- Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Todd M. Cooper
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Michele S. Redell
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Horvath TD, Poventud-Fuentes I, Olayinka L, James A, Haidacher SJ, Hoch KM, Stevens AM, Haag AM, Devaraj S. Validation of atovaquone plasma levels by liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring in pediatric patients. J Mass Spectrom Adv Clin Lab 2022; 26:23-27. [PMID: 36388060 PMCID: PMC9641598 DOI: 10.1016/j.jmsacl.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Atovaquone, an antiparasitic and antifungal, has potential as an anticancer agent. Our LC-MS/MS-based method can accurately quantify atovaquone in plasma. Low LOQ and small sample volume requirements add versatility to our method. Measuring atovaquone in plasma helps to determine the effective dose in children.
Background Atovaquone has traditionally been used as an antiparasitic and antifungal agent, but recent studies have shown its potential as an anticancer agent. The high variability in atovaquone bioavailability highlights the need for therapeutic drug monitoring, especially in pediatric patients. The goal of our study was to develop and validate the performance of an assay to quantify atovaquone plasma concentrations collected from pediatric cancer patients using LC-MS/MS. Methods Atovaquone was extracted from a 10 µL volume of K2-EDTA human plasma using a solution consisting of ACN: EtOH: DMF (8:1:1 v:v:v), separated using reverse-phase chromatography, and detected using a SCIEX 5500 QTrap MS system. LC-MS/MS assay performance was evaluated for precision, accuracy, carryover, sensitivity, specificity, linearity, and interferences. Results Atovaquone and its deuterated internal standard were analyzed using a gradient chromatographic method that had an overall cycle-time of 7.4 min per injection, and retention times of 4.3 min. Atovaquone was measured over a dynamic concentration range of 0.63 – 80 µM with a deviation within ≤ ± 5.1 % of the target value. Intra- and inter-assay precision were ≤ 2.7 % and ≤ 8.4 %, respectively. Dilutional, carryover, and interference studies were also within acceptable limits. Conclusions Our studies have shown that our LC-MS/MS-based method is both reliable and robust for the quantification of plasma atovaquone concentrations and can be used to determine the effective dose of atovaquone for pediatric patients treated for AML.
Collapse
Affiliation(s)
- Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Izmarie Poventud-Fuentes
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Lily Olayinka
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Asha James
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Sigmund J. Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Kathleen M. Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Alexandra M. Stevens
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine/Texas Children's Hospital, Houston, TX, USA
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
- Corresponding author.
| |
Collapse
|
4
|
Jain MK, De Lemos JA, McGuire DK, Ayers C, Eitson JL, Sanchez CL, Kamel D, Meisner JA, Thomas EV, Hegde AA, Mocherla S, Strebe JK, Li X, Williams NS, Xing C, Ahmed MS, Wang P, Sadek HA, Schoggins JW. Atovaquone for treatment of COVID-19: A prospective randomized, double-blind, placebo-controlled clinical trial. Front Pharmacol 2022; 13:1020123. [PMID: 36249792 PMCID: PMC9561237 DOI: 10.3389/fphar.2022.1020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: An in silico screen was performed to identify FDA approved drugs that inhibit SARS-CoV-2 main protease (Mpro), followed by in vitro viral replication assays, and in vivo pharmacokinetic studies in mice. These studies identified atovaquone as a promising candidate for inhibiting viral replication. Methods: A 2-center, randomized, double-blind, placebo-controlled trial was performed among patients hospitalized with COVID-19 infection. Enrolled patients were randomized 2:1 to atovaquone 1500 mg BID versus matched placebo. Patients received standard of care treatment including remdesivir, dexamethasone, or convalescent plasma as deemed necessary by the treating team. Saliva was collected at baseline and twice per day for up to 10 days for RNA extraction for SARS-CoV-2 viral load measurement by quantitative reverse-transcriptase PCR. The primary outcome was the between group difference in log-transformed viral load (copies/mL) using a generalized linear mixed-effect models of repeated measures from all samples. Results: Of the 61 patients enrolled; 41 received atovaquone and 19 received placebo. Overall, the population was predominately male (63%) and Hispanic (70%), with a mean age of 51 years, enrolled a mean of 5 days from symptom onset. The log10 viral load was 5.25 copies/mL vs. 4.79 copies/mL at baseline in the atovaquone vs. placebo group. Change in viral load did not differ over time between the atovaquone plus standard of care arm versus the placebo plus standard of care arm. Pharmacokinetic (PK) studies of atovaquone plasma concentration demonstrated a wide variation in atovaquone levels, with an inverse correlation between BMI and atovaquone levels, (Rho −0.45, p = 0.02). In post hoc analysis, an inverse correlation was observed between atovaquone levels and viral load (Rho −0.54, p = 0.005). Conclusion: In this prospective, randomized, placebo-controlled trial, atovaquone did not demonstrate evidence of enhanced SARS-CoV-2 viral clearance compared with placebo. However, based on the observed inverse correlation between atovaquone levels and viral load, additional PK-guided studies may be warranted to examine the antiviral effect of atovaquone in COVID-19 patients.
Collapse
Affiliation(s)
- Mamta K. Jain
- Department of Internal Medicine/Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
- *Correspondence: Mamta K. Jain, ; Hesham A. Sadek, ; John W. Schoggins,
| | - James A. De Lemos
- Parkland Health and Hospital System, Dallas, TX, United States
- Department of Internal Medicine/Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Darren K. McGuire
- Parkland Health and Hospital System, Dallas, TX, United States
- Department of Internal Medicine/Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Colby. Ayers
- Department of Internal Medicine/Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jennifer L. Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Claudia L. Sanchez
- Department of Internal Medicine/Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dena Kamel
- Department of Internal Medicine/Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jessica A. Meisner
- Department of Internal Medicine/Infectious Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Emilia V. Thomas
- Department of Internal Medicine/Hospital Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Anita A. Hegde
- Parkland Health and Hospital System, Dallas, TX, United States
- Department of Internal Medicine/Hospital Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Satish Mocherla
- Department of Internal Medicine/Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| | | | - Xilong Li
- Department of Population and Data Science, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Noelle S. Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Mahmoud S. Ahmed
- Department of Internal Medicine/Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ping Wang
- Department of Internal Medicine/Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hesham A. Sadek
- Department of Internal Medicine/Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Departments Biophysics, and Molecular Biology, and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Mamta K. Jain, ; Hesham A. Sadek, ; John W. Schoggins,
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Mamta K. Jain, ; Hesham A. Sadek, ; John W. Schoggins,
| |
Collapse
|
5
|
Kapur A, Mehta P, Simmons AD, Ericksen SS, Mehta G, Palecek SP, Felder M, Stenerson Z, Nayak A, Dominguez JMA, Patankar M, Barroilhet LM. Atovaquone: An Inhibitor of Oxidative Phosphorylation as Studied in Gynecologic Cancers. Cancers (Basel) 2022; 14:cancers14092297. [PMID: 35565426 PMCID: PMC9102822 DOI: 10.3390/cancers14092297] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/12/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Oxidative phosphorylation is an active metabolic pathway in cancer. Atovaquone is an oral medication that inhibits oxidative phosphorylation and is FDA-approved for the treatment of malaria. We investigated its potential anti-cancer properties by measuring cell proliferation in 2D culture. The clinical formulation of atovaquone, Mepron, was given to mice with ovarian cancers to monitor its effects on tumor and ascites. Patient-derived cancer stem-like cells and spheroids implanted in NSG mice were treated with atovaquone. Atovaquone inhibited the proliferation of cancer cells and ovarian cancer growth in vitro and in vivo. The effect of atovaquone on oxygen radicals was determined using flow and imaging cytometry. The oxygen consumption rate (OCR) in adherent cells was measured using a Seahorse XFe96 Extracellular Flux Analyzer. Oxygen consumption and ATP production were inhibited by atovaquone. Imaging cytometry indicated that the majority of the oxygen radical flux triggered by atovaquone occurred in the mitochondria. Atovaquone decreased the viability of patient-derived cancer stem-like cells and spheroids implanted in NSG mice. NMR metabolomics showed shifts in glycolysis, citric acid cycle, electron transport chain, phosphotransfer, and metabolism following atovaquone treatment. Our studies provide the mechanistic understanding and preclinical data to support the further investigation of atovaquone's potential as a gynecologic cancer therapeutic.
Collapse
Affiliation(s)
- Arvinder Kapur
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.K.); (M.F.); (Z.S.)
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (P.M.); (G.M.)
| | - Aaron D Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (A.D.S.); (S.P.P.)
| | - Spencer S. Ericksen
- Drug Development Core, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Geeta Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (P.M.); (G.M.)
- Department of Biomedical Engineering, Macromolecular Sciences and Engineering, Precision Health, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (A.D.S.); (S.P.P.)
| | - Mildred Felder
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.K.); (M.F.); (Z.S.)
| | - Zach Stenerson
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.K.); (M.F.); (Z.S.)
| | - Amruta Nayak
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA;
| | | | - Manish Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.K.); (M.F.); (Z.S.)
- Correspondence: (M.P.); (L.M.B.); Tel.: +1-608-263-1210 (M.P.); +1-608-265-2319 (L.M.B.)
| | - Lisa M. Barroilhet
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.K.); (M.F.); (Z.S.)
- Correspondence: (M.P.); (L.M.B.); Tel.: +1-608-263-1210 (M.P.); +1-608-265-2319 (L.M.B.)
| |
Collapse
|
6
|
Classen AY, Henze L, von Lilienfeld-Toal M, Maschmeyer G, Sandherr M, Graeff LD, Alakel N, Christopeit M, Krause SW, Mayer K, Neumann S, Cornely OA, Penack O, Weißinger F, Wolf HH, Vehreschild JJ. Primary prophylaxis of bacterial infections and Pneumocystis jirovecii pneumonia in patients with hematologic malignancies and solid tumors: 2020 updated guidelines of the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology (AGIHO/DGHO). Ann Hematol 2021; 100:1603-1620. [PMID: 33846857 PMCID: PMC8116237 DOI: 10.1007/s00277-021-04452-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
Hematologic and oncologic patients with chemo- or immunotherapy-related immunosuppression are at substantial risk for bacterial infections and Pneumocystis jirovecii pneumonia (PcP). As bacterial resistances are increasing worldwide and new research reshapes our understanding of the interactions between the human host and bacterial commensals, administration of antibacterial prophylaxis has become a matter of discussion. This guideline constitutes an update of the 2013 published guideline of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO). It gives an overview about current strategies for antibacterial prophylaxis in cancer patients while taking into account the impact of antibacterial prophylaxis on the human microbiome and resistance development. Current literature published from January 2012 to August 2020 was searched and evidence-based recommendations were developed by an expert panel. All recommendations were discussed and approved in a consensus conference of the AGIHO prior to publication. As a result, we present a comprehensive update and extension of our guideline for antibacterial and PcP prophylaxis in cancer patients.
Collapse
Affiliation(s)
- Annika Y Classen
- Faculty of Medicine and University Hospital Cologne, Department I for Internal Medicine, University of Cologne, Herderstr. 52-54, 50931, Cologne, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Larissa Henze
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Marie von Lilienfeld-Toal
- Department of Hematology and Oncology, Clinic for Internal Medicine II, University Hospital Jena, Jena, Germany
| | - Georg Maschmeyer
- Hematology, Oncology and Palliative Care, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Michael Sandherr
- Specialist Clinic for Haematology and Oncology, Medical Care Center Penzberg, Penzberg, Germany
| | - Luisa Durán Graeff
- Faculty of Medicine and University Hospital Cologne, Department I for Internal Medicine, University of Cologne, Herderstr. 52-54, 50931, Cologne, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Nael Alakel
- Department I of Internal Medicine, Hematology and Oncology, University Hospital Dresden, Dresden, Germany
| | - Maximilian Christopeit
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Stefan W Krause
- Department of Medicine 5 - Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Karin Mayer
- Medical Clinic III for Oncology, Hematology, Immunooncology and Rheumatology, University Hospital Bonn (UKB), Bonn, Germany
| | - Silke Neumann
- Interdisciplinary Center for Oncology, Wolfsburg, Germany
| | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Department I for Internal Medicine, University of Cologne, Herderstr. 52-54, 50931, Cologne, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Olaf Penack
- Medical Department for Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Florian Weißinger
- Department for Internal Medicine, Hematology/Oncology, and Palliative Care, Evangelisches Klinikum Bethel v. Bodelschwinghsche Stiftungen Bethel, Bielefeld, Germany
| | - Hans-Heinrich Wolf
- Department IV of Internal Medicine, University Hospital Halle, Halle, Germany
| | - Jörg Janne Vehreschild
- Faculty of Medicine and University Hospital Cologne, Department I for Internal Medicine, University of Cologne, Herderstr. 52-54, 50931, Cologne, Germany.
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.
- Department of Internal Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Kuramoto K, Yamamoto M, Suzuki S, Sanomachi T, Togashi K, Seino S, Kitanaka C, Okada M. Verteporfin inhibits oxidative phosphorylation and induces cell death specifically in glioma stem cells. FEBS J 2020; 287:2023-2036. [PMID: 31868973 DOI: 10.1111/febs.15187] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/11/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant primary brain tumour in adults. Since glioma stem cells (GSCs) are associated with therapeutic resistance as well as the initiation and recurrence in GBM, therapies targeting GSCs are considered to be effective for long-term survival in GBM. Several reports suggested that oxidative phosphorylation (OXPHOS) of cancer stem cells is important for their survival; however, the requirement of OXPHOS in GSCs remains unclear. Few effective and safe agents that target GSC mitochondria are available in clinical settings. In this study, we demonstrated that GSCs had high OXPHOS activity compared with isogenic differentiated GSCs and that GSC survival depended on their OXPHOS activity. Remarkably, we showed that complexes III and IV had broad therapeutic windows and that the expression levels of mitochondrial DNA-coded components of complexes III and IV were elevated in GSCs compared with differentiated GSCs. Moreover, our search of the Food and Drug Administration-approved drugs for those targeting GSC mitochondria revealed that verteporfin (Visudyne® ), a drug approved for macular degeneration, was a novel GSC-specific cytotoxic compound that reduced OXPHOS activity. Importantly, the cytotoxic effect of verteporfin was specific to GSCs without any toxicity to normal cells, and the IC50 of approximately 200 nm was ten times less than its maximum blood concentration in humans. Overall, these findings indicated that high mitochondrial OXPHOS of GSCs is a potential GSC-specific vulnerability and that clinically available drugs, such as verteporfin, might become novel GSC-specific cytotoxic agents.
Collapse
Affiliation(s)
- Kenta Kuramoto
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Japan
| | - Masahiro Yamamoto
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Japan.,Department of Clinical Oncology, Yamagata University School of Medicine, Japan
| | - Tomomi Sanomachi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Japan.,Department of Clinical Oncology, Yamagata University School of Medicine, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Japan.,Department of Ophthalmology and Visual Science, Yamagata University School of Medicine, Japan
| | - Shizuka Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Japan.,Faculty of Medicine, Research Institute for Promotion of Medical Science, Yamagata University, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Japan.,Faculty of Medicine, Research Institute for Promotion of Medical Science, Yamagata University, Japan
| | - Masashi Okada
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Japan
| |
Collapse
|
8
|
Lewalle P, Pochon C, Michallet M, Turlure P, Brissot E, Paillard C, Puyade M, Roth-Guepin G, Yakoub-Agha I, Chantepie S. [Prophylaxis of infections post-allogeneic transplantation: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)]. Bull Cancer 2019; 106:S23-S34. [PMID: 30616839 DOI: 10.1016/j.bulcan.2018.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/19/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is a curative treatment for many hematological diseases. However, this procedure causes the patient to be susceptible to infection. Prophylactic treatments are administered in clinical practice even thought the level of evidence of their effectiveness is not always high. In addition, changes in the transplantation procedures - use of reduced intensity conditioning, development of alternative graft sources - must lead to a rethinking of attitudes towards prophylaxis. Our working group based its recommendations on a review of referential articles and publications on the subject found in the literature. These recommendations concern the prophylaxis of infections caused by HSV1, HSV2, varicella zoster, and hepatitis B, as well as anti-bacterial and digestive decontamination prophylaxis, prevention of pneumocystis, toxoplasmosis, tuberculosis, as well as prophylaxis of fungal infections. Other infectious agents usually involved in infections post-allotransplant have been the subject of another set of recommendations from the French Society of Bone Marrow Transplantation and Cellular Therapy.
Collapse
Affiliation(s)
- Philippe Lewalle
- Institut Jules-Bordet, université Libre-de-Bruxelles, service d'hématologie, 1, rue Héger-Bordet, 1000 Bruxelles, Belgique
| | - Cécile Pochon
- CHU de Nancy, service d'onco-hématologie pédiatrique, rue du Morvan, 54511 Vandoeuvre-lès-Nancy, France
| | | | - Pascal Turlure
- Centre hospitalier universitaire, service d'hématologie, 87042 Limoges, France
| | - Eolia Brissot
- Assistance publique des hôpitaux de Paris (AP-HP), hôpital Saint-Antoine, département d'hématologie, 75012 Paris, France
| | | | - Mathieu Puyade
- CHU de Poitiers, service de médecine interne, unité d'hospitalisation d'aval, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | | | - Ibrahim Yakoub-Agha
- CHRU de Lille, service des maladies du sang, 2, avenue Oscar-Lambret, 59037 Lille cedex, France; Université de Lille 2, LIRIC, Inserm U995, 59000 Lille, France
| | - Sylvain Chantepie
- Institut d'hématologie de Basse-Normandie, centre hospitalier universitaire, avenue de la Côte-de-Nacre, 14000 Caen, France.
| |
Collapse
|
9
|
Bondeelle L, Bergeron A. Managing pulmonary complications in allogeneic hematopoietic stem cell transplantation. Expert Rev Respir Med 2018; 13:105-119. [PMID: 30523731 DOI: 10.1080/17476348.2019.1557049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Progress in allogeneic hematopoietic stem cell transplantation (HSCT) procedures has been associated with improved survival in HSCT recipients. However, they have also brought to light organ-specific complications, especially pulmonary complications. In this setting, pulmonary complications are consistently associated with poor outcomes, and improved management of these complications is required. Areas covered: We review the multiple infectious and noninfectious lung complications that occur both early and late after allogeneic HSCT. This includes the description of these complications, risk factors, diagnostic approach and outcome. A literature search was performed using PubMed-indexed journals. Expert commentary: Multiple lung complications after allogeneic HSCT can be diagnosed concomitantly and require a multidisciplinary approach. A specific clinical evaluation including a precise analysis of a lung CT scan is necessary. Management of these lung complications, especially the noninfectious ones, is impaired by the lack of prospective, randomized control trials, suggesting preventive strategies should be developed.
Collapse
Affiliation(s)
- Louise Bondeelle
- a Université Paris Diderot, Service de Pneumologie , APHP, Hôpital Saint-Louis , Paris , France
| | - Anne Bergeron
- a Université Paris Diderot, Service de Pneumologie , APHP, Hôpital Saint-Louis , Paris , France.,b Biostatistics and Clinical Epidemiology Research Team , Univ Paris Diderot, Sorbonne Paris Cité, UMR 1153 CRESS , Paris , France
| |
Collapse
|
10
|
White PL, Price JS, Backx M. Therapy and Management of Pneumocystis jirovecii Infection. J Fungi (Basel) 2018; 4:E127. [PMID: 30469526 PMCID: PMC6313306 DOI: 10.3390/jof4040127] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022] Open
Abstract
The rates of Pneumocystis pneumonia (PcP) are increasing in the HIV-negative susceptible population. Guidance for the prophylaxis and treatment of PcP in HIV, haematology, and solid-organ transplant (SOT) recipients is available, although for many other populations (e.g., auto-immune disorders) there remains an urgent need for recommendations. The main drug for both prophylaxis and treatment of PcP is trimethoprim/sulfamethoxazole, but resistance to this therapy is emerging, placing further emphasis on the need to make a mycological diagnosis using molecular based methods. Outbreaks in SOT recipients, particularly renal transplants, are increasingly described, and likely caused by human-to-human spread, highlighting the need for efficient infection control policies and sensitive diagnostic assays. Widespread prophylaxis is the best measure to gain control of outbreak situations. This review will summarize diagnostic options, cover prophylactic and therapeutic management in the main at risk populations, while also covering aspects of managing resistant disease, outbreak situations, and paediatric PcP.
Collapse
Affiliation(s)
- P Lewis White
- Public Health Wales Microbiology Cardiff, UHW, Heath Park, Cardiff CF14 4XW, UK.
| | - Jessica S Price
- Public Health Wales Microbiology Cardiff, UHW, Heath Park, Cardiff CF14 4XW, UK.
| | - Matthijs Backx
- Public Health Wales Microbiology Cardiff, UHW, Heath Park, Cardiff CF14 4XW, UK.
| |
Collapse
|
11
|
Pneumocystis jirovecii pneumonia prophylaxis in allogeneic hematopoietic cell transplant recipients: can we always follow the guidelines? Bone Marrow Transplant 2018; 54:1082-1088. [PMID: 30413810 DOI: 10.1038/s41409-018-0391-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/26/2018] [Accepted: 10/12/2018] [Indexed: 01/12/2023]
Abstract
Pneumocystis jirovecii pneumonia (PCP) is a life-threatening disease in allogeneic hematopoietic cell transplantation (HCT) recipients. Trimethoprim-sulfamethoxazole (TMP-SMX) is the preferred prophylaxis but has significant toxicity. We assessed 139 consecutive HCT patients for PCP prophylaxis in our center. According to our procedures, TMP-SMX should be given as first-line prophylaxis from engraftment. In case of intolerance, atovaquone (ATO) or aerosolized pentamidine may be given. Thirteen (9.3%) patients did not receive prophylaxis because they early died. Of the 126 prophylaxed patients, 113 (90%) received TMP-SMX and 13 (10%) received ATO as first-line regimen. However, only 51/113 (45%) patients received TMP-SMX as the sole prophylaxis: 60 patients were switched to ATO because of side effect. There were 18 PCP cases: 3 occurred before engraftment, 7 occurred under ATO, 3 occurred while prophylaxis was pending the resolution of side effects, and 5 occurred after stopping prophylaxis. No cases occurred under TMP-SMX while 7 (9.6%) cases occurred under first-(n = 13) or second (n = 60)-line ATO. There are many concerns about PCP prophylaxis after HCT: patients may develop PCP before engraftment or several months after stopping immunosuppressors, and half of them do not receive TMP-SMX all along the at-risk periods. New prophylactic drugs and strategies should be evaluated.
Collapse
|
12
|
Brakemeier S, Pfau A, Zukunft B, Budde K, Nickel P. Prophylaxis and treatment of Pneumocystis Jirovecii pneumonia after solid organ transplantation. Pharmacol Res 2018; 134:61-67. [PMID: 29890253 DOI: 10.1016/j.phrs.2018.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/21/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Pneumocystis jirovecii pneumonia (PJP) is an opportunistic infection diagnosed in immunocompromized patients. After solid organ transplantation, early infection has decreased as a result of effective prophylaxis, but late infections and even outbreaks caused by interpatient transmission of pneumocystis by air are present in the SOT community. Different risk factors for PJP have been described and several indications for PJP prophylaxis have to be considered by clinicians in patients even years after transplantation. Diagnosis of PJP is confirmed by microscopy and immunofluorescence staining of bronchial fluid but PCR as well as serum ß-D-Glucan analysis have become increasingly valuable diagnostic tools. Treatment of choice is Trimethoprim/sulfamethoxazole and early treatment improves prognosis. However, mortality of PJP in solid organ transplant patients is still high and many aspects including the optimal management of immunosuppression during PJP treatment require further investigations.
Collapse
Affiliation(s)
- Susanne Brakemeier
- Department of Nephrology and Medical Intensive Care, Charité, Berlin, Germany.
| | - Anja Pfau
- Department of Nephrology and Medical Intensive Care, Charité, Berlin, Germany
| | - Bianca Zukunft
- Department of Nephrology and Medical Intensive Care, Charité, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité, Berlin, Germany
| | - Peter Nickel
- Department of Nephrology and Medical Intensive Care, Charité, Berlin, Germany
| |
Collapse
|
13
|
Argy N, Le Gal S, Coppée R, Song Z, Vindrios W, Massias L, Kao WC, Hunte C, Yazdanpanah Y, Lucet JC, Houzé S, Clain J, Nevez G. Pneumocystis Cytochrome b Mutants Associated With Atovaquone Prophylaxis Failure as the Cause of Pneumocystis Infection Outbreak Among Heart Transplant Recipients. Clin Infect Dis 2018. [DOI: 10.1093/cid/ciy154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nicolas Argy
- Laboratoire de Parasitologie, Hôpital Bichat–Claude Bernard, APHP, France
- Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, France
- MERIT UMR 216 Institut de Recherche pour le Développement, France
| | - Solène Le Gal
- Laboratoire de Parasitologie, Centre Hospitalo-Universitaire de Brest, France
- GEIHP EA 3142, Université de Bretagne Occidentale, Brest, France
| | - Romain Coppée
- Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, France
- MERIT UMR 216 Institut de Recherche pour le Développement, France
| | - Zehua Song
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
- Translational Research Institute, Henan Provincial People’s Hospital, School of Medicine, Henan University, Zhengzhou, China
| | | | - Laurent Massias
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Bichat–Claude Bernard, APHP, France
- IAME, UMR 1137, INSERM, Université Paris Diderot, COMUE Sorbonne Paris Cité, France
| | - Wei-Chun Kao
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Yazdan Yazdanpanah
- Service des Maladies Infectieuses et Tropicales, France
- IAME, UMR 1137, INSERM, Université Paris Diderot, COMUE Sorbonne Paris Cité, France
| | - Jean-Christophe Lucet
- IAME, UMR 1137, INSERM, Université Paris Diderot, COMUE Sorbonne Paris Cité, France
- Unité d’Hygiène et de Lutte Contre l’Infection Nosocomiale, Hôpital Bichat–Claude Bernard, APHP, Paris, France
| | - Sandrine Houzé
- Laboratoire de Parasitologie, Hôpital Bichat–Claude Bernard, APHP, France
- Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, France
- MERIT UMR 216 Institut de Recherche pour le Développement, France
| | - Jérôme Clain
- Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, France
- MERIT UMR 216 Institut de Recherche pour le Développement, France
| | - Gilles Nevez
- Laboratoire de Parasitologie, Centre Hospitalo-Universitaire de Brest, France
- GEIHP EA 3142, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|