1
|
Goh KKK, Toh WGH, Hee DKH, Ting EZW, Chua NGS, Zulkifli FIB, Sin LJ, Tan TT, Kwa ALH, Lim TP. Quantification of Fosfomycin in Combination with Nine Antibiotics in Human Plasma and Cation-Adjusted Mueller-Hinton II Broth via LCMS. Antibiotics (Basel) 2022; 11:antibiotics11010054. [PMID: 35052932 PMCID: PMC8772704 DOI: 10.3390/antibiotics11010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023] Open
Abstract
Fosfomycin-based combination therapy has emerged as an attractive option in our armamentarium due to its synergistic activity against carbapenem-resistant Gram-negative bacteria (CRGNB). The ability to simultaneously measure fosfomycin and other antibiotic drug levels will support in vitro and clinical investigations to develop rational antibiotic combination dosing regimens against CRGNB infections. We developed an analytical assay to measure fosfomycin with nine important antibiotics in human plasma and cation-adjusted Mueller–Hinton II broth (CAMHB). We employed a liquid-chromatography tandem mass spectrometry method and validated the method based on accuracy, precision, matrix effect, limit-of-detection, limit-of-quantification, specificity, carryover, and short-term and long-term stability on U.S. Food & Drug Administration (FDA) guidelines. Assay feasibility was assessed in a pilot clinical study in four patients on antibiotic combination therapy. Simultaneous quantification of fosfomycin, levofloxacin, meropenem, doripenem, aztreonam, piperacillin/tazobactam, ceftolozane/tazobactam, ceftazidime/avibactam, cefepime, and tigecycline in plasma and CAMHB were achieved within 4.5 min. Precision, accuracy, specificity, and carryover were within FDA guidelines. Fosfomycin combined with any of the nine antibiotics were stable in plasma and CAMHB up to 4 weeks at −80 °C. The assay identified and quantified the respective antibiotics administered in the four subjects. Our assay can be a valuable tool for in vitro and clinical applications.
Collapse
Affiliation(s)
- Kelvin Kau-Kiat Goh
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
- SingHealth Duke-NUS Pathology Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore
| | - Wilson Ghim-Hon Toh
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Daryl Kim-Hor Hee
- Shimadzu (Asia Pacific) Pte Ltd., 79 Science Park Dr, #02-01/08 Cintech IV, Singapore 118264, Singapore; (E.Z.-W.T.); (D.K.-H.H.)
| | - Edwin Zhi-Wei Ting
- Shimadzu (Asia Pacific) Pte Ltd., 79 Science Park Dr, #02-01/08 Cintech IV, Singapore 118264, Singapore; (E.Z.-W.T.); (D.K.-H.H.)
| | - Nathalie Grace Sy Chua
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Farah Iffah Binte Zulkifli
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Li-Jiao Sin
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Thuan-Tong Tan
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore;
- Department of Infectious Diseases, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore;
- Emerging Infectious Diseases Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Correspondence: (A.L.-H.K.); (T.-P.L.); Tel.: +65-6321-3401 (A.L.-H.K.); +65-6326-6959 (T.-P.L.)
| | - Tze-Peng Lim
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
- SingHealth Duke-NUS Pathology Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore;
- Correspondence: (A.L.-H.K.); (T.-P.L.); Tel.: +65-6321-3401 (A.L.-H.K.); +65-6326-6959 (T.-P.L.)
| |
Collapse
|
2
|
Vonk SEM, van der Meer-Vos M, Bos LDJ, Neerincx AH, Majoor CJ, Maitland-van der Zee AH, Mathôt RAA, Kemper EM. Quantitative Method for the Analysis of Ivacaftor, Hydroxymethyl Ivacaftor, Ivacaftor Carboxylate, Lumacaftor, and Tezacaftor in Plasma and Sputum Using Liquid Chromatography With Tandem Mass Spectrometry and Its Clinical Applicability. Ther Drug Monit 2021; 43:555-563. [PMID: 33165217 PMCID: PMC8277188 DOI: 10.1097/ftd.0000000000000829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND The novel cystic fibrosis transmembrane conductance regulator (CFTR) modulators, ivacaftor, lumacaftor, and tezacaftor, are the first drugs directly targeting the underlying pathophysiological mechanism in cystic fibrosis (CF); however, independent studies describing their pharmacokinetics are lacking. The aim of this study was to develop a quantification method for ivacaftor and its 2 main metabolites, lumacaftor and tezacaftor, in plasma and sputum using liquid chromatography with tandem mass spectrometry. METHODS The developed method used a small sample volume (20 µL) and simple pretreatment method; protein precipitation solution and internal standard were added in one step to each sample. Liquid chromatography with tandem mass spectrometry was performed for a total run time of 6 minutes. The method was validated by assessing selectivity, carryover, linearity, accuracy and precision, dilution, matrix effects, and stability. RESULTS The selectivity was good as no interference from matrices was observed. In the concentration range from 0.01 to 10.0 mg/L, calibration curves were linear with a correlation coefficient >0.9997 for all compounds. The within-run and between-run accuracy were between 99.7% and 116% at the lower limit of quantitation (LLOQ) and between 95.8% and 112.9% for all concentrations above LLOQ for all analytes in plasma and sputum. Within-run and between-run precisions were <12.7% for LLOQ and <6.7% for the higher limit of quantitation. Samples were stable, with no significant degradation at examined temperatures and time points. Clinical applicability was revealed by analyzing samples from 2 patients with CF. CONCLUSIONS The presented method enables simultaneous quantification of ivacaftor, lumacaftor, and tezacaftor in plasma and sputum and is an improvement over previous methods because it uses smaller sample volumes, a simple pretreatment protocol, and includes tezacaftor. In future studies, it can be applied for examining pharmacokinetics characteristics of new CF transmembrane conductance regulator modulators.
Collapse
Affiliation(s)
| | | | - Lieuwe D J Bos
- Respiratory Medicine, and
- Intensive Care, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
3
|
Liquid Chromatography Mass Spectrometry Detection of Antibiotic Agents in Sputum from Persons with Cystic Fibrosis. Antimicrob Agents Chemother 2021; 65:AAC.00927-20. [PMID: 33139284 DOI: 10.1128/aac.00927-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
Antibiotic therapy is expected to impact host microbial communities considerably, yet many studies focused on microbiome and health are often confounded by limited information about antibiotic exposure. Given that antibiotics have diverse pharmacokinetic and antimicrobial properties, investigating the type and concentration of these agents in specific host specimens would provide much needed insight into their impact on the microbes therein. Here, we developed liquid chromatography mass spectrometry (LC-MS) methods to detect 18 antibiotic agents in sputum from persons with cystic fibrosis. Antibiotic spike-in control samples were used to compare three liquid extraction methods on the Waters Acquity Quattro Premier XE. Extraction with dithiothreitol captured the most antibiotics and was used to detect antibiotics in sputum samples from 11 people with cystic fibrosis, with results being compared to the individuals' self-reported antibiotic use. For the sputum samples, two LC-MS assays were used; the Quattro Premier detected nanomolar or micromolar concentrations of 16 antibiotics, whereas the Xevo TQ-XS detected all 18 antibiotics, most at subnanomolar levels. In 45% of tested sputum samples (71/158), at least one antibiotic that was not reported by the subject was detected by both LC-MS methods, a discordance largely explained by the thrice weekly administration and long half-life of azithromycin. For ∼37% of samples, antibiotics reported as taken by the individual were not detected by either instrument. Our results provide an approach for detecting a variety of antibiotics at the site of infection, thereby providing a means to include antibiotic usage data into microbiome studies.
Collapse
|