1
|
Hu H, Zhang Y, Zhang P, Wang J, Yuan Q, Shi W, Zhang S, Feng H, Chen Y, Yu M, Chen H, Jiang Y, Yang Q, Qu T. Bloodstream Infections Caused by Klebsiella pneumoniae Carbapenemase-Producing P. aeruginosa Sequence Type 463, Associated With High Mortality Rates in China: A Retrospective Cohort Study. Front Cell Infect Microbiol 2021; 11:756782. [PMID: 34790589 PMCID: PMC8592259 DOI: 10.3389/fcimb.2021.756782] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022] Open
Abstract
Objectives Recently, KPC-producing P. aeruginosa has rapidly emerged and expanded in East China. Here we described the clinical impact and characteristics of bloodstream infections (BSIs) from the dominant KPC-producing CRPA belonging to Sequence Type (ST) 463. Methods Retrospective cohort study was performed with CRPA BSI cases from 2019 to 2020 in a hospital in East China. Clinical characteristics, risk factors, and all-course mortality were evaluated. All CRPA isolates had whole-genome sequencing, antimicrobial susceptibility testing, and serum resistance assay. Representative isolates were tested for virulence in a Galleria mellonella infection model. Results Among the 50 CRPA BSI cases, ST463 predominated (48.0%). In multivariate analysis, we found three independent risk factors for fatal outcome: KPC carriage (OR 4.8; CI95% 1.0-23.7; P = 0.05), Pitt bacteremia score (OR 1.3; CI95% 1.0-1.6; P = 0.02), and underlying hematological disease (OR 8.5; CI95% 1.6-46.4; P = 0.01). The baseline clinical variables were not statistically different across STs, however the 28-day mortality was significantly higher in ST463 cases than that in non-ST463 cases (66.7% vs 33.3%, P = 0.03). ExoU and exoS virulence genes coexisted in all ST463 isolates, and the carbapenem resistant gene bla KPC were produced in almost all ST463 isolates, significantly higher than in the non-ST463 group(95.8% vs 7.7%, P<0.001). ST463 CRPA isolates also showed higher resistance rates to antipseudomonal cephalosporins, monobactam, and fluoroquinolones. And ST463 CRPA was confirmed hypervirulence in the larvae model. The genome of one ST463 CRPA strain showed that the bla KPC-2 gene was the sole resistance gene located on a 41,104bp plasmid pZYPA01, carried on a 7-kb composite transposon-like element flanked by two IS26 elements (IS26-Tn3-tnpA-ISKpn27-bla KPC-2-ISKpn6-IS26). Plasmid from various species presented core bla KPC-2 was franked by mobile genetic element ISKpn27 and ISKpn6. Conclusions In the ST463 CRPA BSI cohort, the mortality rates were higher than those in the non-ST463 CRPA BSI. The ST463 CRPA clone coharboring the bla KPC and exoU/exoS genes emerged and spread in East China, which might develop to a new threat in the clinic. Our results suggest that the surveillance of the new high-risk clone, ST463 CRPA, should be strengthened in China, even worldwide in the future.
Collapse
Affiliation(s)
- Hangbin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Piaopiao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jie Wang
- Respiratory Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Weixiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Sheng Zhang
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiting Feng
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Meihong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Hongchao Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Retrospective Data Insight into the Global Distribution of Carbapenemase-Producing Pseudomonas aeruginosa. ANTIBIOTICS (BASEL, SWITZERLAND) 2021; 10:antibiotics10050548. [PMID: 34065054 PMCID: PMC8151531 DOI: 10.3390/antibiotics10050548] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to determine the global distribution and molecular characteristics of carbapenemase-producing Pseudomonas aeruginosa isolates. A total of 328 (11.1%, 328/2953) carbapenemase-producing P. aeruginosa isolates from humans were obtained from public databases as of October 2019. Of which, the blaVIM and blaIMP genes were the most prevalent carbapenemases in the P. aeruginosa isolates. These carbapenemase-producing P. aeruginosa isolates possessed 34 distinct sequence types (STs) and six predominated: ST357, ST823, ST308, ST233, ST175 and ST111. The ST357 and ST823 isolates were primarily found detected in Asia and all ST175 isolates were found in Europe. The ST308, ST233 and ST111 isolates were spread worldwide. Further, all ST823 isolates and the majority of ST111, ST233 and ST175 isolates carried blaVIM but ST357 isolates primarily carried blaIMP. ST308 isolates provide a key reservoir for the spread of blaVIM, blaIMP and blaNDM. WGS analysis revealed that ST111 carried a great diversity of ARG types (n = 23), followed by ST357 (n = 21), ST308 (n = 19), ST233 (n = 18), ST175 (n = 14) and ST823 (n = 10). The ST175 isolates carried a more diversity and frequent of aminoglycoside ARGs, and ST233 isolates harbored more tetracycline ARGs. Our findings revealed that different carbapenem resistance genes were distributed primarily in variant STs of P. aeruginosa isolates, these isolates also possessed an extensive geographical distribution that highlights the need for surveillance studies that detect carbapenemase-producing P. aeruginosa isolates in humans.
Collapse
|
3
|
Yoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol 2021; 12:614058. [PMID: 33679638 PMCID: PMC7930500 DOI: 10.3389/fmicb.2021.614058] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is one of the major concerns in clinical settings impelling a great challenge to antimicrobial therapy for patients with infections caused by the pathogen. While membrane permeability, together with derepression of the intrinsic beta-lactamase gene, is the global prevailing mechanism of carbapenem resistance in P. aeruginosa, the acquired genes for carbapenemases need special attention because horizontal gene transfer through mobile genetic elements, such as integrons, transposons, plasmids, and integrative and conjugative elements, could accelerate the dissemination of the carbapenem-resistant P. aeruginosa. This review aimed to illustrate epidemiologically the carbapenem resistance in P. aeruginosa, including the resistance rates worldwide and the carbapenemase-encoding genes along with the mobile genetic elements responsible for the horizontal dissemination of the drug resistance determinants. Moreover, the modular mobile elements including the carbapenemase-encoding gene, also known as the P. aeruginosa resistance islands, are scrutinized mostly for their structures.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|