1
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Imaging-based profiling for elucidation of antibacterial mechanisms of action. Biotechnol Appl Biochem 2025; 72:542-569. [PMID: 39467068 DOI: 10.1002/bab.2681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
In this review, we aim to summarize experimental data and approaches to identifying cellular targets or mechanisms of action of antibacterials based on imaging techniques. Imaging-based profiling methods, such as bacterial cytological profiling, dynamic bacterial morphology imaging, and others, have become a useful research tool for mechanistic studies of new antibiotics as well as combinations with conventional ones and other therapeutic options. The main methodological and experimental details and obtained results are summarized and discussed. The review covers the literature up to February 2024.
Collapse
Affiliation(s)
- Anna A Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vera A Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anton P Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Akhter J, Bakht P, Gupta R, Pathania R. Unveiling the Antibacterial Efficacy of a Benzonitrile Small Molecule, IITR00210, in Shigella Infection. ACS Infect Dis 2024; 10:4167-4181. [PMID: 39610198 DOI: 10.1021/acsinfecdis.4c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The escalating prevalence of bacterial infections and the rapid emergence of multidrug-resistant Gram-negative bacterial pathogens highlight an urgent demand for effective antibacterial agents. In this study, we report our findings on IITR00210, a small molecule belonging to the nitrile class. The small molecule demonstrates broad-spectrum activity against bacterial pathogens, specifically against enteric pathogens, and exhibits antibiofilm activity. IITR00210 displays potent bactericidal activity against enteropathogens, resulting in a reduction of bacterial counts greater than 3 Log10 CFU in time-kill kinetic assays. Mechanistic investigations revealed that IITR00210 induces bacterial cell envelope stress, leading to the alteration of the overall proton motive force (PMF). The disruption of PMF causes intracellular ATP dissipation and ultimately promotes cell death. The cell envelope stress generated in the presence of IITR00210 leads to a translational aberration. Importantly, IITR00210 exhibits a safe profile in in vitro and in vivo settings. The small molecule further showed potent intracellular antibacterial activity in polymorphonuclear cells infected with enteric pathogens and antiadhesion activity in mammalian cell lines. IITR00210 proves to be a promising therapeutic candidate, displaying a lack of stable resistance development, and it exhibited efficacy in the treatment of bacterial infections in a shigellosis murine model.
Collapse
Affiliation(s)
- Jawed Akhter
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Perwez Bakht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
3
|
Gupta R, Bhando T, Pathania R. Overexpression of l,d-Transpeptidase A Induces Dispensability of Rod Complex in Escherichia coli. ACS Infect Dis 2024; 10:3928-3938. [PMID: 39412350 DOI: 10.1021/acsinfecdis.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
Antimicrobial resistance (AMR) is a significant global threat, and the presence of resistance-determinant genes is one of the major driving forces behind it. The bacterial rod complex is an essential set of proteins that is crucial for cell survival due to its role in cell wall biogenesis and shape maintenance. Therefore, these proteins offer excellent potential as drug targets; however, compensatory mutations in nontarget genes render this complex nonessential. The MreB protein of this complex is an actin homologue that rotates along the longitudinal axis of the cell to provide rod shape to the bacteria. In this study, using chemical-chemical interaction profiling and FtsZ suppression assay, we identified the MreB targeting activity of IITR07865, a previously discovered small molecule in our lab. Escherichia coli suppressors against IITR07865 revealed mutations in two cell division-associated genes, min C and pal, that have not been previously implicated in rod complex essentiality. IITR07865 resistant mutants were found to inactivate and render the rod complex nonessential, making the rod complex inhibitors ineffective. Further, through transcriptome analysis, we reveal the primary cause of resistance in suppressor strains to be the overexpression of an l, d-transpeptidase A enzyme, which is involved in peptidoglycan and Braun's lipoprotein cross-linking. Our results demonstrate a novel mechanism of resistance development in rod-shaped Gram-negative bacterial pathogen E. coli involved in UTIs where mecillinam, a clinically used antibiotic that targets rod complex, is a drug of choice.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| | - Timsy Bhando
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| |
Collapse
|
4
|
Khamari B, Bulagonda EP. Unlocking Nitrofurantoin: Understanding Molecular Mechanisms of Action and Resistance in Enterobacterales. Med Princ Pract 2024; 34:121-137. [PMID: 39471786 PMCID: PMC11936445 DOI: 10.1159/000542330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/28/2024] [Indexed: 11/01/2024] Open
Abstract
Antimicrobial resistance (AMR) is a global health crisis that has already claimed millions of lives and is projected to affect millions more unless urgent action is taken. Effective control of AMR requires the correct choice and dosage of antibiotics, as well as robust surveillance and research. Understanding the mechanisms of antibiotic action and the emergence of resistance phenotypes along with their genotypes is essential. This knowledge, combined with insights into resistance prevalence and spread, empowers clinicians to propose alternative therapies. Nitrofurantoin, a 70-year-old antibiotic, remains effective for the treatment of uncomplicated lower UTIs. Preventing emergence and spread of nitrofurantoin-resistant superbugs would preserve the efficacy of this antibiotic which is crucial for ongoing and future AMR efforts. Nitrofurantoin resistance evolves slowly, leading to low prevalence compared to other antibiotics. However, it is often linked with extensive drug resistance, complicating treatment outcomes. Even a minor percentage of nitrofurantoin-resistant bacteria can cause significant clinical challenges due to irreversible evolution. While detailed study of these mechanisms can guide the development of strategies to combat nitrofurantoin resistance, early detection of resistant infections is critical for saving lives. The current review aimed to provide a comprehensive analysis of nitrofurantoin's mechanisms of action, resistance evolution, prevalence, and resistance prediction. Our goal is to offer valuable insights for researchers and clinicians to enhance nitrofurantoin use and address the challenges posed by AMR. Antimicrobial resistance (AMR) is a global health crisis that has already claimed millions of lives and is projected to affect millions more unless urgent action is taken. Effective control of AMR requires the correct choice and dosage of antibiotics, as well as robust surveillance and research. Understanding the mechanisms of antibiotic action and the emergence of resistance phenotypes along with their genotypes is essential. This knowledge, combined with insights into resistance prevalence and spread, empowers clinicians to propose alternative therapies. Nitrofurantoin, a 70-year-old antibiotic, remains effective for the treatment of uncomplicated lower UTIs. Preventing emergence and spread of nitrofurantoin-resistant superbugs would preserve the efficacy of this antibiotic which is crucial for ongoing and future AMR efforts. Nitrofurantoin resistance evolves slowly, leading to low prevalence compared to other antibiotics. However, it is often linked with extensive drug resistance, complicating treatment outcomes. Even a minor percentage of nitrofurantoin-resistant bacteria can cause significant clinical challenges due to irreversible evolution. While detailed study of these mechanisms can guide the development of strategies to combat nitrofurantoin resistance, early detection of resistant infections is critical for saving lives. The current review aimed to provide a comprehensive analysis of nitrofurantoin's mechanisms of action, resistance evolution, prevalence, and resistance prediction. Our goal is to offer valuable insights for researchers and clinicians to enhance nitrofurantoin use and address the challenges posed by AMR.
Collapse
Affiliation(s)
- Balaram Khamari
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, India
| | - Eswarappa Pradeep Bulagonda
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, India
| |
Collapse
|
5
|
Saini M, Gaurav A, Hussain A, Pathania R. Small Molecule IITR08367 Potentiates Antibacterial Efficacy of Fosfomycin against Acinetobacter baumannii by Efflux Pump Inhibition. ACS Infect Dis 2024; 10:1711-1724. [PMID: 38562022 DOI: 10.1021/acsinfecdis.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fosfomycin is a broad-spectrum single-dose therapy approved for treating lower urinary tract infections. Acinetobacter baumannii, one of the five major UTI-causing pathogens, is intrinsically resistant to fosfomycin. Reduced uptake and active efflux are major reasons for this intrinsic resistance. AbaF, a major facilitator superfamily class of transporter in A. baumannii, is responsible for fosfomycin efflux and biofilm formation. This study describes the identification and validation of a novel small-molecule efflux pump inhibitor that potentiates fosfomycin efficacy against A. baumannii. An AbaF inhibitor screening was performed against Escherichia coli KAM32/pUC18_abaF, using the noninhibitory concentration of 24 putative efflux pump inhibitors. The inhibitory activity of IITR08367 [bis(4-methylbenzyl) disufide] against fosfomycin/H+ antiport was validated using ethidium bromide efflux, quinacrine-based proton-sensitive fluorescence, and membrane depolarization assays. IITR08367 inhibits fosfomycin/H+ antiport activity by perturbing the transmembrane proton gradient. IITR08367 is a nontoxic molecule that potentiates fosfomycin activity against clinical strains of A. baumannii and prevents biofilm formation by inhibiting efflux pump (AbaF). The IITR08367-fosfomycin combination reduced bacterial burden by > 3 log10 in kidney and bladder tissue in the murine UTI model. Overall, fosfomycin, in combination with IITR08367, holds the potential to treat urinary tract infections caused by A. baumannii.
Collapse
Affiliation(s)
- Mahak Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247 667, India
| | - Amit Gaurav
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247 667, India
| | - Arsalan Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247 667, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247 667, India
| |
Collapse
|
6
|
Saini M, Gaurav A, Kothari A, Omar BJ, Gupta V, Bhattacharjee A, Pathania R. Small Molecule IITR00693 (2-Aminoperimidine) Synergizes Polymyxin B Activity against Staphylococcus aureus and Pseudomonas aeruginosa. ACS Infect Dis 2023; 9:692-705. [PMID: 36716174 DOI: 10.1021/acsinfecdis.2c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The rise of antibiotic resistance among skin-infecting pathogens poses an urgent threat to public health and has fueled the search for new therapies. Enhancing the potency of currently used antibiotics is an alternative for the treatment of infections caused by drug-resistant pathogens. In this study, we aimed to identify a small molecule that can potentiate currently used antibiotics. IITR00693 (2-aminoperimidine), a novel antibacterial small molecule, potentiates the antibacterial activity of polymyxin B against Staphylococcus aureus and Pseudomonas aeruginosa. Herein, we investigated in detail the mode of action of this interaction and the molecule's capability to combat soft-tissue infections caused by S. aureus and P. aeruginosa. A microdilution checkerboard assay was performed to determine the synergistic interaction between polymyxin B and IITR00693 in clinical isolates of S. aureus and P. aeruginosa. Time-kill kinetics, post-antibiotic effect, and resistance generation studies were performed to assess the pharmacodynamics of the combination. Assays based on different fluorescent probes were performed to decipher the mechanism of action of this combination. The in vivo efficacy of the IITR00693-polymyxin B combination was determined in a murine acute wound infection model. IITR00693 exhibited broad-spectrum antibacterial activity. IITR00693 potentiated polymyxin B and colistin against polymyxin-resistant S. aureus. IITR00693 prevented the generation of resistant mutants against multiple antibiotics. The IITR00693-polymyxin B combination decreased the S. aureus count by >3 log10 CFU in a murine acute wound infection model. IITR00693 is a potential and promising candidate for the treatment of soft-tissue infections along with polymyxins.
Collapse
Affiliation(s)
- Mahak Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand247 667, India
| | - Amit Gaurav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand247 667, India
| | - Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand249 201, India
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand249 201, India
| | - Varsha Gupta
- Department of Microbiology, Government Medical College and Hospital Chandigarh, Chandigarh160 030, India
| | | | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand247 667, India
| |
Collapse
|
7
|
She P, Li S, Zhou L, Liu Y, Xu L, Hussain Z, Li Y, Li Z, Liu S, Wu Y. Repurposing Eltrombopag as an Antimicrobial Agent Against Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2022; 12:790686. [PMID: 35140693 PMCID: PMC8819062 DOI: 10.3389/fmicb.2021.790686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Because of the excessive use of antibiotics, methicillin-resistant Staphylococcus aureus (MRSA) has become prevalent worldwide. Moreover, the formation of S. aureus biofilms often cause persistence and relapse of infections. Thus, the discovery of antibiotics with excellent antimicrobial and anti-biofilm activities is urgently needed. In the present study, eltrombopag (EP), a classic thrombopoietin receptor agonist, exhibited potential antimicrobial activity against S. aureus and its biofilms. Through our mechanistic studies, EP was found to interfere with proton motive force in S. aureus. The in vivo anti-infective efficacy of EP was further confirmed in the wound infection model, thigh infection model and peritonitis model by MRSA infection. In addition, the cytotoxicity of EP against mammalian cells and the in vivo toxicity of EP in animal models were not observed at the tested concentrations. Collectively, these results indicate that EP could be considered a potential novel antimicrobial agent against recalcitrant infections caused by MRSA.
Collapse
Affiliation(s)
- Pengfei She
- Department of Laboratory Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Shijia Li
- Department of Laboratory Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Linying Zhou
- Department of Laboratory Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yaqian Liu
- Department of Laboratory Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Lanlan Xu
- Department of Laboratory Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zubair Hussain
- Department of Laboratory Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yimin Li
- Department of Laboratory Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zehao Li
- Department of Laboratory Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Shasha Liu
- Department of Laboratory Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Laboratory Medicine, The First Hospital of Changsha, Changsha, China
- *Correspondence: Yong Wu,
| |
Collapse
|
8
|
Pratap Verma D, Ansari MM, Verma NK, Saroj J, Akhtar S, Pant G, Mitra K, Singh BN, Ghosh JK. Tandem Repeat of a Short Human Chemerin-Derived Peptide and Its Nontoxic d-Lysine-Containing Enantiomer Display Broad-Spectrum Antimicrobial and Antitubercular Activities. J Med Chem 2021; 64:15349-15366. [PMID: 34662112 DOI: 10.1021/acs.jmedchem.1c01352] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To design novel antimicrobial peptides by utilizing the sequence of the human host defense protein, chemerin, a seven-residue amphipathic stretch located in the amino acid region, 109-115, was identified, which possesses the highest density of hydrophobic and positively charged residues. Although this 7-mer peptide was inactive toward microorganisms, its 14-mer tandem repeat (Chem-KVL) was highly active against different bacteria including methicillin-resistant Staphylococcus aureus, a multidrug-resistant Staphylococcus aureus strain, and slow- and fast-growing mycobacterial species. The selective enantiomeric substitutions of its two l-lysine residues were attempted to confer cell selectivity and proteolytic stability to Chem-KVL. Chem-8dK with a d-lysine replacement in its middle (eighth position) showed the lowest hemolytic activity against human red blood cells among Chem-KVL analogues and maintained high antimicrobial properties. Chem-8dK showed in vivo efficacy against Pseudomonas aeruginosa infection in BALB/c mice and inhibited the development of resistance in this microorganism up to 30 serial passages and growth of intracellular mycobacteria in THP-1 cells.
Collapse
Affiliation(s)
- Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mohd Mustkim Ansari
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Garima Pant
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Bhupendra Narain Singh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| |
Collapse
|
9
|
Affiliation(s)
- Vuong Van Hung Le
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
- * E-mail: (VVHL); (JR)
| | - Jasna Rakonjac
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
- * E-mail: (VVHL); (JR)
| |
Collapse
|