1
|
Xing J, Han R, Zhao J, Zhang Y, Zhang M, Zhang Y, Zhang H, Nang SC, Zhai Y, Yuan L, Wang S, Wu H. Revisiting therapeutic options against resistant klebsiella pneumoniae infection: Phage therapy is key. Microbiol Res 2025; 293:128083. [PMID: 39904002 DOI: 10.1016/j.micres.2025.128083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Multi-drug resistant and carbapenem-resistant hypervirulent Klebsiella pneumoniae strains are spreading globally at an alarming rate, emerging as one of the most serious threats to global public health. The formidable challenges posed by the current arsenal of antimicrobials highlight the urgent need for novel strategies to combat K. pneumoniae infections. This review begins with a comprehensive analysis of the global dissemination of virulence factors and critical resistance profiles in K. pneumoniae, followed by an evaluation of the accessibility of novel therapeutic approaches for treating K. pneumoniae in clinical settings. Among these, phage therapy stands out for its considerable potential in addressing life-threatening K. pneumoniae infections. We critically examine the existing preclinical and clinical evidence supporting phage therapy, identifying key limitations that impede its broader clinical adoption. Additionally, we rigorously explore the role of genetic engineering in expanding the host range of K. pneumoniae phages, and discuss the future trajectory of this technology. In light of the 'Bad Bugs, No Drugs' era, we advocate leveraging artificial intelligence and deep learning to optimize and expand the application of phage therapy, representing a crucial advancement in the fight against the escalating threat of K. pneumoniae infections.
Collapse
Affiliation(s)
- Jiabao Xing
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Rongjia Han
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jinxin Zhao
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yuying Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yichao Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hang Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Sue C Nang
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yajun Zhai
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li Yuan
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shanmei Wang
- Department of Microbiology Laboratory, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Hua Wu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
2
|
Aslan AT, Akova M. Recent updates in treating carbapenem-resistant infections in patients with hematological malignancies. Expert Rev Anti Infect Ther 2024; 22:1055-1071. [PMID: 39313753 DOI: 10.1080/14787210.2024.2408746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Patients with hematological malignancies (PHMs) are at increased risk for infections caused by carbapenem-resistant organisms (CROs) due to frequent exposure to broad-spectrum antibiotics and prolonged hospital stays. These infections result in high mortality and morbidity rates along with delays in chemotherapy, longer hospitalizations, and increased health care costs. AREAS COVERED Treatment alternatives for CRO infections in PHMs. EXPERT OPINION The best available treatment option for KPC and OXA-48 producers is ceftazidime/avibactam. Imipenem/cilastatin/relebactam and meropenem/vaborbactam remain as the alternative options. They can also be used as salvage therapy in KPC-positive Enterobacterales infections resistant to ceftazidime/avibactam, if in vitro susceptibility is shown. Treatment of metallo-β-lactamase producers is an unmet need. Ceftazidime/avibactam plus aztreonam or aztreonam/avibactam seems to be the most reliable option for metallo-β-lactamase producers. As a first-line option for carbapenem-resistant Pseudomonas aeruginosa infections, ceftolozane/tazobactam is preferable and ceftazidime/avibactam and imipenem/cilastatin/relebactam constitute alternative regimens. Although sulbactam/durlobactam is the most reliable option against carbapenem-resistant Acinetobacter baumannii infections, its utility as monotherapy and in PHMs is not yet known. Cefiderocol can be selected as a 'last-resort' option for CRO infections. New risk score models supported by artificial intelligence algorithms can be used to predict the exact risk of infections in previously colonized patients.
Collapse
Affiliation(s)
- Abdullah Tarık Aslan
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Murat Akova
- Faculty of Medicine, Infectious Diseases and Clinical Microbiology, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
3
|
Davin-Regli A, Pagès JM, Vergalli J. The contribution of porins to enterobacterial drug resistance. J Antimicrob Chemother 2024; 79:2460-2470. [PMID: 39205648 DOI: 10.1093/jac/dkae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
In Enterobacteriaceae, susceptibility to cephalosporins and carbapenems is often associated with membrane and enzymatic barrier resistance. For about 20 years, a large number of Klebsiella pneumoniae, Escherichia coli and Enterobacter cloacae presenting ß-lactam resistance have been isolated from medical clinics. In addition, some of the resistant isolates exhibited alterations in the outer membrane porin OmpC-OmpF orthologues, resulting in the complete absence of gene expression, replacement by another porin or mutations affecting channel properties. Interestingly, for mutations reported in OmpC-OmpF orthologues, major changes in pore function were found to be present in the gene encoding for OmpC. The alterations were located in the constriction region of the porin and the resulting amino acid substitutions were found to induce severe restriction of the lumen diameter and/or alteration of the electrostatic field that governs the diffusion of charged molecules. This functional adaptation through porins maintains the entry of solutes necessary for bacterial growth but critically controls the influx of harmful molecules such as β-lactams at a reduced cost. The data recently published show the importance of understanding the underlying parameters affecting the uptake of antibiotics by infectious bacteria. Furthermore, the development of reliable methods to measure the concentration of antibiotics within bacterial cells is key to combat impermeability-resistance mechanisms.
Collapse
|
4
|
Bologna E, Licari LC, Manfredi C, Ditonno F, Cirillo L, Fusco GM, Abate M, Passaro F, Di Mauro E, Crocetto F, Pandolfo SD, Aveta A, Cilio S, Di Filippo I, Barone B, Franco A, Arcaniolo D, La Rocca R, Pinchera B, Napolitano L. Carbapenem-Resistant Enterobacteriaceae in Urinary Tract Infections: From Biological Insights to Emerging Therapeutic Alternatives. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:214. [PMID: 38399502 PMCID: PMC10889937 DOI: 10.3390/medicina60020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Urinary tract infections (UTIs) are the second most frequent type of infection observed in clinical practice. Gram-negative Enterobacteriaceae are common pathogens in UTIs. Excessive antibiotic use in humans and animals, poor infection control, and increased global travel have accelerated the spread of multidrug-resistant strains (MDR). Carbapenem antibiotics are commonly considered the last line of defense against MDR Gram-negative bacteria; however, their efficacy is now threatened by the increasing prevalence of carbapenem-resistant Enterobacteriaceae (CRE). This comprehensive review aims to explore the biological mechanisms underlying carbapenem resistance and to present a focus on therapeutic alternatives currently available for complicated UTIs (cUTIs). A comprehensive bibliographic search was conducted on the PubMed/MEDLINE, Scopus, and Web of Science databases in December 2023. The best evidence on the topic was selected, described, and discussed. Analyzed with particular interest were the clinical trials pivotal to the introduction of new pharmacological treatments in the management of complicated cUTIs. Additional suitable articles were collected by manually cross-referencing the bibliography of previously selected papers. This overview provides a current and comprehensive examination of the treatment options available for CRE infections, offering a valuable resource for understanding this constantly evolving public health challenge.
Collapse
Affiliation(s)
- Eugenio Bologna
- Unit of Urology, Department of Maternal-Child and Urological Sciences, Policlinico Umberto I Hospital, “Sapienza” University, 00161 Rome, Italy; (E.B.); (L.C.L.)
| | - Leslie Claire Licari
- Unit of Urology, Department of Maternal-Child and Urological Sciences, Policlinico Umberto I Hospital, “Sapienza” University, 00161 Rome, Italy; (E.B.); (L.C.L.)
| | - Celeste Manfredi
- Unit of Urology, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Francesco Ditonno
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata, 37100 Verona, Italy;
| | - Luigi Cirillo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Giovanni Maria Fusco
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Marco Abate
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Francesco Passaro
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Ernesto Di Mauro
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Felice Crocetto
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Savio Domenico Pandolfo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
- Department of Urology, University of L’Aquila, 67010 L’Aquila, Italy
| | - Achille Aveta
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Simone Cilio
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Isabella Di Filippo
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples “Federico II”, 80131 Naples, Italy; (I.D.F.); (B.P.)
| | - Biagio Barone
- Division of Urology, Department of Surgical Sciences, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy;
| | - Antonio Franco
- Department of Urology, Sant’Andrea Hospital, “Sapienza” University, 00189 Rome, Italy;
| | - Davide Arcaniolo
- Unit of Urology, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Roberto La Rocca
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Biagio Pinchera
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples “Federico II”, 80131 Naples, Italy; (I.D.F.); (B.P.)
| | - Luigi Napolitano
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| |
Collapse
|