1
|
Chaqroun A, Bertrand I, Wurtzer S, Moulin L, Boni M, Soubies S, Boudaud N, Gantzer C. Assessing infectivity of emerging enveloped viruses in wastewater and sewage sludge: Relevance and procedures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173648. [PMID: 38825204 DOI: 10.1016/j.scitotenv.2024.173648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
The emergence of SARS-CoV-2 has heightened the need to evaluate the detection of enveloped viruses in the environment, particularly in wastewater, within the context of wastewater-based epidemiology. The studies published over the past 80 years focused primarily on non-enveloped viruses due to their ability to survive longer in environmental matrices such as wastewater or sludge compared to enveloped viruses. However, different enveloped viruses survive in the environment for different lengths of time. Therefore, it is crucial to be prepared to assess the potential infectious risk that may arise from future emerging enveloped viruses. This will require appropriate tools, notably suitable viral concentration methods that do not compromise virus infectivity. This review has a dual purpose: first, to gather all the available literature on the survival of infectious enveloped viruses, specifically at different pH and temperature conditions, and in contact with detergents; second, to select suitable concentration methods for evaluating the infectivity of these viruses in wastewater and sludge. The methodology used in this data collection review followed the systematic approach outlined in the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. Concentration methods cited in the data gathered are more tailored towards detecting the enveloped viruses' genome. There is a lack of suitable methods for detecting infectious enveloped viruses in wastewater and sludge. Ultrafiltration, ultracentrifugation, and polyethylene glycol precipitation methods, under specific/defined conditions, appear to be relevant approaches. Further studies are necessary to validate reliable concentration methods for detecting infectious enveloped viruses. The choice of culture system is also crucial for detection sensitivity. The data also show that the survival of infectious enveloped viruses, though lower than that of non-enveloped ones, may enable environmental transmission. Experimental data on a wide range of enveloped viruses is required due to the variability in virus persistence in the environment.
Collapse
Affiliation(s)
- Ahlam Chaqroun
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | | | | | - Mickael Boni
- French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France
| | | | | | | |
Collapse
|
2
|
Zhou J, Sevilleno F, Rokhforooz F, Taher J. Preparing for another Ebola Outbreak: The impact of viral inactivation methods on commonly measured biochemistry analytes in plasma and urine. Clin Biochem 2024; 124:110718. [PMID: 38242342 DOI: 10.1016/j.clinbiochem.2024.110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
INTRODUCTION Infectious specimens containing viruses like Ebola require sample manipulation to ensure the safety of laboratory staff, which may negatively impact biochemistry test results. We evaluated the impact of viral inactivation methods on 25 biochemistry analytes in plasma, and seven biochemistry analytes in urine. METHODS Fifteen lithium heparinized plasma specimens with and without gel underwent the following viral inactivation methods: 1) untreated, 2) Triton X-100 treatment, 2) heated for 60 min then Triton X-100 treatment, 3) heated for 60 min, 4) heated for 75 min, and 5) heated for 90 min. Electrolytes, protein, enzymes, glucose, as well as hepatic and renal markers were measured on the Roche Cobas e601, c502 or c702. Urinalysis analytes were measured on the Siemens CLINITEK. Acceptable recovery was based on Institute for Quality Management in Healthcare 2021 guidelines or ± 1 for urinalysis. RESULTS Potassium and lactate dehydrogenase were impacted by the presence of gel. Viral inactivation with Triton X-100 had minimal impact on the biochemistry results. Heat inactivation resulted in significant negative bias in alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, creatinine, total protein, amylase, lactate dehydrogenase and creatine kinase. Positive bias in phosphate, aspartate transaminase, total bilirubin, and uric acid were observed after heat inactivation. CONCLUSION Reliable results for commonly measured electrolytes, enzymes and proteins can be obtained after viral inactivation by Triton X-100 treatment at room temperature. However, heat inactivation has significant negative impact on routine biochemistry enzymes and alternative testing processes should be explored.
Collapse
Affiliation(s)
- Janet Zhou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Franceska Sevilleno
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Fari Rokhforooz
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jennifer Taher
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
3
|
Liew OW, Fanusi F, Ng JYX, Ahidjo BA, Ling SSM, Lilyanna S, Chong JPC, Lim AES, Lim WZ, Ravindran S, Chu JJH, Lim SL, Richards AM. Immunoassay-Compatible Inactivation of SARS-CoV-2 in Plasma Samples for Enhanced Handling Safety. ACS OMEGA 2022; 7:25510-25520. [PMID: 35903176 PMCID: PMC9301769 DOI: 10.1021/acsomega.2c02585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) inactivation is an important step toward enhanced biosafety in testing facilities and affords a reduction in the biocontainment level necessary for handling virus-positive biological specimens. Virus inactivation methods commonly employ heat, detergents, or combinations thereof. In this work, we address the dearth of information on the efficacy of SARS-CoV-2 inactivation procedures in plasma and their downstream impact on immunoassays. We evaluated the effects of heat (56 °C for 30 min), detergent (1-5% Triton X-100), and solvent-detergent (SD) combinations [0.3-1% tri-n-butyl phosphate (TNBP) and 1-2% Triton X-100] on 19 immunoassays across different assay formats. Treatments are deemed immunoassay-compatible when the average and range of percentage recovery (treated concentration relative to untreated concentration) lie between 90-110 and 80-120%, respectively. We show that SD treatment (0.3% TNBP/1% Triton-X100) is compatible with more than half of the downstream immunoassays tested and is effective in reducing SARS-CoV-2 infectivity in plasma to below detectable levels in plaque assays. This facile method offers enhanced safety for laboratory workers handling biological specimens in clinical and research settings.
Collapse
Affiliation(s)
- Oi Wah Liew
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
| | - Felic Fanusi
- NUS
Medicine BSL3 Core Facility, Yong Loo Lin School of Medicine, National
University of Singapore, National University
Health System, 14 Medical
Drive, Singapore 117599, Singapore
- Department
of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Jessica Yan Xia Ng
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
| | - Bintou Ahmadou Ahidjo
- NUS
Medicine BSL3 Core Facility, Yong Loo Lin School of Medicine, National
University of Singapore, National University
Health System, 14 Medical
Drive, Singapore 117599, Singapore
- Department
of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Samantha Shi Min Ling
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
| | - Shera Lilyanna
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
| | - Jenny Pek Ching Chong
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
| | - Angeline Eng Siew Lim
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
| | - Wei Zheng Lim
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
| | - Sindhu Ravindran
- NUS
Medicine BSL3 Core Facility, Yong Loo Lin School of Medicine, National
University of Singapore, National University
Health System, 14 Medical
Drive, Singapore 117599, Singapore
| | - Justin Jang Hann Chu
- NUS
Medicine BSL3 Core Facility, Yong Loo Lin School of Medicine, National
University of Singapore, National University
Health System, 14 Medical
Drive, Singapore 117599, Singapore
- Department
of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
- Infectious
Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Shir Lynn Lim
- Yong
Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore
- Department
of Cardiology, National University Heart
Centre Singapore, 1E
Kent Ridge Road, Singapore 119228, Singapore
| | - Arthur Mark Richards
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
- Christchurch
Heart Institute, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|