1
|
Zhou L, Zeng X, Yang Y, Li R, Zhao Z. Applications and Prospects of CRISPR/Cas9 Technology in the Breeding of Major Tropical Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:3388. [PMID: 39683180 DOI: 10.3390/plants13233388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
China is a major producer of tropical crops globally, boasting rich varieties and diverse functions. Tropical crops account for two-thirds of the plant species in this country. Many crops and their products, such as oil palm, rubber, banana, sugarcane, cassava, and papaya are well known to people. Most of these products are irreplaceable and possess special functions. They not only supply important raw materials for people's daily life and for industrial and agricultural production but also contribute to the economic growth in the tropical and subtropical regions of China. However, the modern molecular breeding of these crops is severely hampered by their biological characteristics and genetic complexity. Issues such as polyploidy, heterozygosity, vegetative propagation, long juvenile periods, and large plant sizes result in time consuming, low efficiency, and slow progress in conventional breeding of the major tropical crops. The development of genome-editing technologies has brought a new way in tropical crops breeding. As an emerging gene-editing technology, the CRISPR-Cas9 system has been widely used in plants, adopted for its higher targeting efficiency, versatility, and ease of usage. This approach has been applied in oil palm, rubber, banana, sugarcane, cassava, and papaya. This review summarized the delivery patterns, mutation detection, and application of the CRISPR-Cas9 system in tropical crop breeding, discussed the existing problems, and addressed prospects for future applications in this field, providing references to relevant studies.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xianhai Zeng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Zhihao Zhao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
2
|
Feng S, Wang Z, Li A, Xie X, Liu J, Li S, Li Y, Wang B, Hu L, Yang L, Guo T. Strategies for High-Efficiency Mutation Using the CRISPR/Cas System. Front Cell Dev Biol 2022; 9:803252. [PMID: 35198566 PMCID: PMC8860194 DOI: 10.3389/fcell.2021.803252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated systems have revolutionized traditional gene-editing tools and are a significant tool for ameliorating gene defects. Characterized by high target specificity, extraordinary efficiency, and cost-effectiveness, CRISPR/Cas systems have displayed tremendous potential for genetic manipulation in almost any organism and cell type. Despite their numerous advantages, however, CRISPR/Cas systems have some inherent limitations, such as off-target effects, unsatisfactory efficiency of delivery, and unwanted adverse effects, thereby resulting in a desire to explore approaches to address these issues. Strategies for improving the efficiency of CRISPR/Cas-induced mutations, such as reducing off-target effects, improving the design and modification of sgRNA, optimizing the editing time and the temperature, choice of delivery system, and enrichment of sgRNA, are comprehensively described in this review. Additionally, several newly emerging approaches, including the use of Cas variants, anti-CRISPR proteins, and mutant enrichment, are discussed in detail. Furthermore, the authors provide a deep analysis of the current challenges in the utilization of CRISPR/Cas systems and the future applications of CRISPR/Cas systems in various scenarios. This review not only serves as a reference for improving the maturity of CRISPR/Cas systems but also supplies practical guidance for expanding the applicability of this technology.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lianhe Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Wang D, Pan D, Xie B, Wang S, Xing X, Liu X, Ma Y, Andersson L, Wu J, Jiang L. Porcine ZBED6 regulates growth of skeletal muscle and internal organs via multiple targets. PLoS Genet 2021; 17:e1009862. [PMID: 34710100 PMCID: PMC8577783 DOI: 10.1371/journal.pgen.1009862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/09/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
ZBED6 (zinc finger BED domain containing protein 6) is a transcription factor unique to placental mammals and its interaction with the IGF2 (insulin-like growth factor 2) locus plays a prominent role in the regulation of postnatal skeletal muscle growth. Here, we generated lean Bama miniature pigs by generating ZBED6-knockout (ZBED6−/−) and investigated the mechanism underlying ZBED6 in growth of muscle and internal organs of placental mammals. ZBED6−/− pigs show markedly higher lean mass, lean mass rate, larger muscle fiber area and heavier internal organs (heart and liver) than wild-type (WT) pigs. The striking phenotypic changes of ZBED6-/- pigs coincided with remarkable upregulation of IGF2 mRNA and protein expression across three tissues (gastrocnemius muscle, longissimus dorsi, heart). Despite a significant increase in liver weight, ZBED6-/- pigs show comparable levels of IGF2 expression to those of WT controls. A mechanistic study revealed that elevated methylation in the liver abrogates ZBED6 binding at the IGF2 locus, explaining the unaltered hepatic IGF2 expression in ZBED6-/- pigs. These results indicate that a ZBED6-IGF2-independent regulatory pathway exists in the liver. Transcriptome analysis and ChIP-PCR revealed new ZBED6 target genes other than IGF2, including cyclin dependent kinase inhibitor 1A (CDKN1A) and tsukushi, small leucine rich proteoglycan (TSKU), that regulates growth of muscle and liver, respectively. The lean meat rate is an important economic trait for the swine industry and it is determined by muscle growth and development. A single base change in intron 3 of the insulin-like growth factor 2 (IGF2) gene increases meat production in pigs by disrupting a binding site for zinc finger BED domain containing protein 6 (ZBED6). Chinese indigenous pig breeds carrying the homozygous IGF2 wild-type allele produce low lean meat. We thus generate a lean pig model in Chinese Bama pig by knocking out ZBED6. In this model, we demonstrate that ZBED6 KO increases muscle and internal organ growth through ZBED6-IGF2 axis and other target genes. These results not only open new strategies for lean meat breeding in Chinese indigenous pigs, but also provide new insights to the global function of ZBED6 in organ growth and development.
Collapse
Affiliation(s)
- Dandan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Dengke Pan
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Baocai Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengnan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | | | - Xuexue Liu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Jiangwei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JW); (LJ)
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * E-mail: (JW); (LJ)
| |
Collapse
|