1
|
Gachman AM, Outlaw AC, Newell B, Bartosh J, Rudar M. Low feed intake at weaning reduces intestinal glutathione levels and promotes cysteine oxidation to taurine in pigs. J Anim Sci 2024; 102:skae348. [PMID: 39526461 PMCID: PMC11630854 DOI: 10.1093/jas/skae348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Weaning stress in pigs is associated with low feed intake and poor nutrient utilization. Cysteine is a sulfur amino acid with key roles in pig production, but how cysteine metabolism and requirements are affected by weaning stress should be better defined. The objective of this study was to determine the collective impact of weaning and feed restriction on tissue cysteine metabolism. Pigs were weaned at 21-d age without access to feed (W; 6.90 ± 0.81 kg; n = 9; reflecting acute nutritional stress) or were not weaned and remained with the sow (nonweaned [NW]; 6.81 ± 0.65 kg; n = 8). At euthanasia (23-d age), blood, bile, liver, jejunum, and ileum tissues were collected. Plasma, bile, and tissue amino acid and amino thiol concentrations were analyzed by HPLC. The activity of glutamate cysteine ligase (GCL) and glutathione synthetase (GSS), enzymes needed for glutathione (GSH) production, and cysteine dioxygenase 1 (CDO1) were determined with activity assays followed by HPLC analysis of reaction products. Plasma (271 vs. 192 ± 19 µmol/L; P < 0.001) and liver (417 vs. 298 ± 33 nmol/g; P < 0.05) Cys concentrations were increased in W compared to NW pigs. Despite greater plasma Cys, jejunum and ileum Cys content were not affected by weaning (P > 0.10), whereas γ-glutamylcysteine (γ-GlyCys), the immediate precursor of GSH, declined in both jejunum (14.3 vs. 9.7 ± 1.4 nmol/g; P < 0.01) and ileum (11.2 vs. 6.4 ± 0.8 nmol/g; P < 0.001) in W pigs. Glutathione content was lower in the jejunum (1,379 vs. 1,720 ± 70 nmol/g; P < 0.05) and ileum (1,497 vs. 1,740 ± 74 nmol/g; P < 0.05) in W pigs. In the jejunum, GCL activity tended to be greater (0.56 vs. 0.39 ± 0.07 nmol γ-GluCys • mg-1 • min-1; P < 0.10), whereas GSS activity tended to be lower (1.11 vs. 1.38 ± 0.10 nmol GSH • mg-1 • min-1; P < 0.10) in W compared to NW pigs. In the ileum, the activities of GCL and GSS were not affected by weaning (P > 0.10). Although liver CDO1 activity was not different between groups (P < 0.10), liver taurine was greater in W compared to NW pigs (5,115 vs. 2,336 ± 912 nmol/g; P = 0.001). Bile concentrations of Cys (1,203 vs. 279 ± 103 µmol/L; P < 0.001) and cysteinylglycine (203 vs. 117 ± 33 µmol/L; P < 0.10), the direct product of GSH degradation, were greater in W compared to NW pigs. Collectively, these results suggest that systemic Cys is not effectively utilized for gut GSH production in newly weaned pigs; instead, it is oxidized to taurine and eliminated in bile.
Collapse
Affiliation(s)
| | - Alex C Outlaw
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Brooke Newell
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Julia Bartosh
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Marko Rudar
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
2
|
Koo B, Choi J, Holanda DM, Yang C, Nyachoti CM. Comparative effects of dietary methionine and cysteine supplementation on redox status and intestinal integrity in immunologically challenged-weaned pigs. Amino Acids 2023; 55:139-152. [PMID: 36371728 DOI: 10.1007/s00726-022-03213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022]
Abstract
Sulfur-containing amino acids such as methionine and cysteine play critical roles in immune system and redox status. A body of evidence shows that metabolic aspects of supplemented Met and Cys may differ in the body. Therefore, the study aimed to investigate the effects of dietary Met and Cys supplementation in immunologically challenged weaned pigs. Forty weaned piglets (6.5 ± 0.3 kg) were randomly allocated to five treatment groups. The treatment included: (1) sham-challenged control (SCC), (2) challenged control (CC), (3) MET (CC + 0.1% DL-Met), (4) CYS (CC + 0.1% L-Cys), and (5) MET + CYS (CC + 0.1% DL-Met + 0.1% L-Cys). On day 7, all pigs were intramuscularly injected with either Escherichia coli O55:B5 lipopolysaccharides (LPS) or phosphate-buffered saline. Blood, liver, and jejunum samples were analyzed for immune response and redox status. The CC group had lower (P < 0.05) villus surface area and higher (P < 0.05) flux of 4-kDa fluorescein isothiocyanate dextran (FD4) than the SCC group. A lower (P < 0.05) glutathione (GSH) concentration was observed in the jejunum of pigs in the CC group than those in the SCC group. Dietary Cys supplementation increased (P < 0.05) villus surface area, GSH levels, and reduced (P < 0.05) the flux of FD4 in the jejunum of LPS-challenged pigs. Dietary Met supplementation enhanced (P < 0.05) hepatic GSH content. Pigs challenged with LPS in the MET group had lower serum IL-8 concentration than those in the CC group. There was a Met × Cys interaction (P < 0.05) in serum IL-4 and IL-8 concentrations, and Trolox equivalent antioxidant capacity. Dietary L-Cys supplementation restored intestinal integrity and GSH levels that were damaged by lipopolysaccharides administration. Dietary DL-Met supplementation improved hepatic GSH and reduced systemic inflammatory response, but antagonistic interaction with dietary L-Cys supplementation was observed in the inflammatory response and redox status.
Collapse
Affiliation(s)
- Bonjin Koo
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | | | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | |
Collapse
|
3
|
Li S, Luo X, Liao Z, Xu H, Liang M, Mai K, Zhang Y. Additional supplementation of sulfur-containing amino acids in the diets improves the intestinal health of turbot fed high-lipid diets. FISH & SHELLFISH IMMUNOLOGY 2022; 130:368-379. [PMID: 36115604 DOI: 10.1016/j.fsi.2022.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
An eight-week feeding trial was conducted to investigate the effects of diets supplemented with three sulfur-containing amino acids (SAA), namely, methionine, cysteine, and taurine, on the intestinal health status of juvenile turbot (Scophthalmus maximus) fed high-lipid diets. Four diets were formulated, namely, a high-lipid control diet (16% lipid, HL) and three SAA-supplemented diets, which were formulated by supplementing 1.5% methionine (HLM), 1.5% cysteine (HLC), and 1.5% taurine (HLT) into the HL control diet, respectively. Each diet was assigned to triplicate tanks, and each tank was stocked with 30 juvenile fish (appr. initial weight, 8 g). The histological and morphometric results showed that dietary SAA supplementation obviously improved the intestinal morphology and integrity, in particular as reflected by higher height of microvilli and mucosal folds. Dietary SAA supplementation, in particular cysteine, up-regulated the gene expression of mucin-2 and tight junction proteins (ZO-1, Tricellilun and JAM). Dietary SAA supplementation remarkably down-regulated the gene expression of apoptosis-related factors such as p38, JNK, and Bax, expression of pro-inflammatory factors (e.g., NF-κB, AP-1 IL-1β, IL-8, and TNF-α). SAA supplementation resulted in higher antioxidative abilities in the intestine. Additionally, dietary SAA supplementation largely altered the communities of intestinal microbiota. Compared with the HL group, higher relative abundance of potential beneficial bacteria, and lower relative abundance of opportunistic pathogens were observed in SAA-supplemented groups. Dietary taurine supplementation significantly increased the relative abundance of Ligilactobacillus (in particular Lactobacillus murinus) and Limosilactobacillus (especially Lactobacillus reuteri). In conclusion, dietary sulfur-containing amino acids supplementation have promising potential in ameliorating the intestinal inflammation of turbot fed high-lipid diets. Especially dietary cysteine and taurine supplementation have more positive effects on the communities of the intestinal microbiota of turbot.
Collapse
Affiliation(s)
- Sihui Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xing Luo
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | - Zhangbin Liao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
4
|
Li J, Ding H, Meng Y, Li G, Fu Q, Guo Q, Yin Z, Ye Z, Zhou H, Shen N. Taurine Metabolism Aggravates the Progression of Lupus by Promoting the Function of Plasmacytoid Dendritic Cells. Arthritis Rheumatol 2020; 72:2106-2117. [PMID: 32608557 DOI: 10.1002/art.41419] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 05/21/2020] [Accepted: 06/16/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Type I interferons (IFNs) are critical in the development of systemic lupus erythematosus (SLE). Metabolic abnormalities cause dysregulation of multiple immune cells, but the metabolic regulation of type I IFN production is not well clarified in SLE. We undertook this study to define amino acid metabolism features in SLE and to explore the function of disease-relevant metabolites in the control of plasmacytoid dendritic cell (pDC)-mediated type I IFN production and the progression of SLE. METHODS Metabolomic profiling of the serum from SLE patients and healthy controls was performed by mass spectrometry. The effects of SLE-related metabolites on type I IFN production were explored in human and mouse pDCs. The reactive oxygen species (ROS) levels of pDCs from wild-type and Ncf1-/- mice were measured by flow cytometry. Mechanisms were investigated by RNA sequencing and immunoblotting. In vivo effects of SLE-relevant metabolites were systemically analyzed in B6.Cg-Sle1NZM2410/Aeg Yaa/DcrJ mice. RESULTS Taurine was higher in the serum from SLE patients compared to healthy controls (P < 0.001) and rheumatoid arthritis patients (P < 0.001). Taurine content was positively correlated with disease activity and the expression of IFN signature genes. The addition of taurine facilitated IFN regulatory factor 7 phosphorylation and enhanced type I IFN production by reducing the ROS levels in pDCs in a neutrophil cytosolic factor 1-dependent manner. Taurine supplementation promoted expression of type I IFN-induced genes, activated lymphocytes, and increased autoantibodies and proteinuria, leading to more serious nephritis. CONCLUSION Taurine metabolism is involved in the development of SLE by enhancing pDC-mediated type I IFN production. Targeted inhibition of taurine or implementation of a taurine-restricted diet has therapeutic potential in SLE.
Collapse
Affiliation(s)
- Jun Li
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Meng
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guanhua Li
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiong Fu
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Guo
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Haibo Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, State Key Laboratory of Oncogenes and Related Genes, and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China, and Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|