1
|
Chen J, Guo S, Shi S. Effects of water acidifiers on the growth performance, intestinal function and gut microflora in broilers. Br Poult Sci 2025:1-8. [PMID: 39898934 DOI: 10.1080/00071668.2025.2454958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
1. This study evaluated the effect of acidified drinking water on the gastrointestinal function and intestinal health of broilers.2. A total of 630 one-day-old male broilers (Arbor Acre) were randomly assigned to one of three treatment groups: drinking water treatment (CON), drinking water + 0.5 ml Selko pH®/L (Selko pH), or + 0.85 ml Forticoat®/L (Forticoat) treated groups. Performance data, gut and digesta samples were collected from the broilers at the age of 21 and 42 d.3. The results showed that acidifying drinking water had no significant effect on body weight or average daily gain (ADG). However, addition of Forticoat significantly increased (p < 0.05) feed conversion ratio (FCR) throughout the experimental period and significantly increased (p < 0.05) pepsin activity on d 21. The Selko pH supplemented drinking water significantly increased (p < 0.05) the relative length of the duodenum and jejunum on d 21. The relative length of the jejunum and caecum on d 42 compared to birds receiving CON. The addition of the Forticoat to drinking water significantly increased (p < 0.05) the relative length of the jejunum and caecum on d 42 than for samples from birds in the CON group. In the caecal chyme, abundance of Blautia, Bifidobasterium, Faecalibacterium, Limosilactobacillus and Akkermania spp. on d 21 were significantly higher (p < 0.05) in the caecum of birds receiving Selko pH than those in CON group and the number of Escherichia Shigella in Selko pH and Forticoat group were significantly lower (p < 0.05).4. Overall, adding Seiko pH and Forticoat to drinking water improved pepsin activity, reduced the number of caecal pathogens, increased the number of beneficial bacteria and improved intestinal health in broilers.
Collapse
Affiliation(s)
- J Chen
- Department of Feed and Nutrition, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - S Guo
- Department of Feed and Nutrition, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - S Shi
- Department of Feed and Nutrition, Jiangsu Institute of Poultry Science, Yangzhou, China
| |
Collapse
|
2
|
Wang X, Qin Y, Li J, Huang P, Li Y, Huang J, Wang Q, Yang H. Vitamin B5 supplementation enhances intestinal development and alters microbes in weaned piglets. Anim Biotechnol 2024; 35:2335340. [PMID: 38587818 DOI: 10.1080/10495398.2024.2335340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
This study explored the effects of different vitamin B5 (VB5) levels on intestinal growth and function of weaned piglets. Twenty-one piglets (7.20 ± 1.11 kg) were included in a 28-day feeding trial with three treatments, including 0 mg/kg (L-VB5), 10 mg/kg (Control) and 50 mg/kg (H-VB5) of VB5 supplement. The results showed that: Large intestine weight/body weight was the highest in H-VB5 group, Control and H-VB5 groups had significantly higher villus height and villus height/crypt depth than the L-VB5 in the ileum (p < .05). Goblet cells (ileal crypt) and endocrine cells (ileal villus) significantly increased in Control and H-VB5 (p < .05). The H-VB5 group exhibited significantly higher levels of ki67 and crypt depth in the cecum and colon, colonic goblet cells and endocrine cells were both rising considerably (p < .05). Isobutyric acid and isovaleric acid were significantly reduced in the H-VB5 group (p < .05), and there was a decreasing trend in butyric acid (p = .073). At the genus level, the relative abundance of harmful bacteria such as Clostridium_Sensu_Structo_1 Strecto_1, Terrisporbacter and Streptococcus decreased significantly and the relative abundance of beneficial bacteria Turicibacter increased significantly in H-VB5 group (p < .05). Overall, the addition of 50 mg/kg VB5 primarily enhanced the morphological structure, cell proliferation and differentiation of the ileum, cecum and colon. It also had a significant impact on the gut microbiota and short-chain fatty acids.
Collapse
Affiliation(s)
- Xin Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yan Qin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Pengfei Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jing Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
3
|
Lin Q, Tu X, Li X, Gou F, Ding L, Lu Z, Feng J, Ying Y, Hu C. Effects of electrolyte balance on intestinal barrier, amino acid metabolism, and mTORC1 signaling pathway in piglets fed low-protein diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:408-417. [PMID: 38812495 PMCID: PMC11134538 DOI: 10.1016/j.aninu.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 05/31/2024]
Abstract
A proper dietary electrolyte balance (dEB) is essential to ensure optimal growth performance of piglets. In the low-protein diet, this balance may be affected by the reduction of soybean meal and the inclusion of high levels of synthetic amino acids. The objective of this experiment was to evaluate the optimal dEB of low-protein diets and its impact on the growth performance of piglets. A total of 108 piglets (initial age of 35 d) were randomly divided into 3 groups with 6 replicates of 6 pigs each as follows: low electrolyte diet (LE group; dEB = 150 milliequivalents [mEq]/kg); medium electrolyte diet (ME group; dEB = 250 mEq/kg); high electrolyte diet (HE group; dEB = 350 mEq/kg). Results indicated that the LE and HE diet significantly decreased the average daily gain, average daily feed intake, and crude protein digestibility (P < 0.05) in piglets. Meanwhile, LE diets disrupted the structural integrity of the piglets' intestines and decreased jejunal tight junction protein (occludin and claudin-1) expression (P < 0.05). Additionally, the pH and HCO3- in the arterial blood of piglets in the LE group were lower than those in the ME and HE groups (P < 0.05). Interestingly, the LE diet significantly increased lysine content in piglet serum (P < 0.05), decreased the levels of arginine, leucine, glutamic acid, and alanine (P < 0.05), and inhibited the mammalian target of rapamycin complex 1 (mTORC1) pathway by decreasing the phosphorylation abundance of key proteins. In summary, the dietary electrolyte imbalance could inhibit the activation of the mTORC1 signaling pathway, which might be a key factor in the influence of the dEB on piglet growth performance and intestinal health. Moreover, second-order polynomial (quadratic) regression analysis showed that the optimal dEB of piglets in the low-protein diet was 250 to 265 mEq/kg.
Collapse
Affiliation(s)
- Qian Lin
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Xiaodian Tu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Xin Li
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Feiyang Gou
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Lin Ding
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Hangzhou 310000, China
| | - Zeqing Lu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Jie Feng
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Yongfei Ying
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Hangzhou 310000, China
| | - Caihong Hu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| |
Collapse
|
4
|
Zentek J, Vahjen W, Grześkowiak Ł, Martínez-Vallespín B, Holthausen JS, Saliu EM. The Gut Microbiome in Pigs and Its Impact on Animal Health. PRODUCTION DISEASES IN FARM ANIMALS 2024:157-177. [DOI: 10.1007/978-3-031-51788-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Li Y, Yang H, Yu B, Wang J, Zhu M, Liu J, Zheng Z, Qian Z, Wei L, Lv H, Zhang L, Xu Y. Fermentation improves flavors, bioactive substances, and antioxidant capacity of Bian-Que Triple-Bean Soup by lactic acid bacteria. Front Microbiol 2023; 14:1152654. [PMID: 37533834 PMCID: PMC10390724 DOI: 10.3389/fmicb.2023.1152654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
The ancient traditional Chinese drink Bian-Que Triple-Bean Soup made by fermentation (FTBS) of Lactococcus lactis subsp. lactis YM313 and Lacticaseibacillus casei YQ336 is a potential functional drink. The effect of fermentation on the flavor and biological activity of FTBS was evaluated by analyzing its chemical composition. Five volatile flavors were detected in modified FTBS. Fermentation decreased the proportion of nonanal (beany flavor substances) but significantly increased the total flavone contents, phenol contents and many bioactive small molecule substances in FTBS. The changes of these substances led to the significant improvement of FTBS sensory evaluation, antioxidant activity and prebiotic potential. This research provides a theoretical basis for the application of Lactic acid bacteria (LAB) in the fermentation of edible plant-based foods and transformation from traditional food to industrial production.
Collapse
Affiliation(s)
- Yiming Li
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Huixin Yang
- Comparative Molecular Biosciences Graduate Program, University of Minnesota – Twin Cities, St. Paul, MN, United States
| | - Bin Yu
- Department of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Jiayao Wang
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Manli Zhu
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Jiao Liu
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Zhenjie Zheng
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Zhenning Qian
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Linya Wei
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Huanyong Lv
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Lili Zhang
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Yunhe Xu
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
6
|
René R, Sebastian V, Marlies D, Lukas S, Annemarie K, Andrea L. Risk factors associated with post-weaning diarrhoea in Austrian piglet-producing farms. Porcine Health Manag 2023; 9:20. [PMID: 37170128 PMCID: PMC10176918 DOI: 10.1186/s40813-023-00315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Post-weaning diarrhoea (PWD) is a frequent, multifactorial disease of piglets leading to increased mortality rates and high economic losses. Due to the emergence of multi-resistant Escherichia coli isolates and the ban of zinc oxide (ZnO) in the EU since June 2022, alternative measures to prevent PWD are urgently needed. While an abundance of feed supplements is described to prevent PWD, there are hardly any studies reflecting the current situation of PWD in the field. Thus, we aimed to identify differences in management practices, housing and feeding strategies between farms with PWD and farms without PWD. Data were personally collected using a semi-structured questionnaire in 257 Austrian piglet-producing farms. Farms with PWD in more than 10% of all weaned groups within twelve months prior to data collection were defined as case farms (n = 101), while the remaining 136 farms were defined as control farms. Data from 237 farms and 69 explanatory variables were analysed via penalized binary logistic regression using elastic-net in 100 different splits into randomly selected training and test datasets (80:20). Treatment with ZnO and/or colistin (136 farms) was negatively associated with PWD in all splits and had the biggest estimated absolute log odds ratio out of all tested variables. Implementation of an all-in/all-out system in the nursery units and administration of probiotics or horseradish also had preventive effects in most splits (≥ 97%). A higher number of feeding phases for piglets within the first seven weeks of life and housing on fully slatted floors was associated negatively with the occurrence of PWD as well in > 95% of all splits. PWD was more likely to occur on farms having problems with neonatal diarrhoea or postpartum dysgalactia syndrome. While our data demonstrate that treatment with ZnO or colistin had the biggest statistical effect on PWD, we were able to identify other preventive measures like supplementation with probiotics or horseradish. Since implementation of all-in/all-out measures and fully slatted floors were also negatively associated with the occurrence of PWD on visited farms, we assume that reduction of bacterial load by the implementation of simple hygiene measures are still crucial to prevent PWD.
Collapse
Affiliation(s)
- Renzhammer René
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria.
| | - Vetter Sebastian
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Dolezal Marlies
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Schwarz Lukas
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Käsbohrer Annemarie
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Ladinig Andrea
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| |
Collapse
|
7
|
Shao Y, Peng Q, Wu Y, Peng C, Wang S, Zou L, Qi M, Peng C, Liu H, Li R, Xiong X, Yin Y. The Effect of an Essential Oil Blend on Growth Performance, Intestinal Health, and Microbiota in Early-Weaned Piglets. Nutrients 2023; 15:nu15020450. [PMID: 36678320 PMCID: PMC9862375 DOI: 10.3390/nu15020450] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Essential oils (EO) are promising feed additives for their antibacterial, antioxidant, and immune-enhancing abilities with low toxicity. Carvacrol, thymol, and cinnamaldehyde are commonly used to synthesize EO. However, few studies focus on combining these three EO in early-weaned piglets. In the present study, 24 piglets weaned at 21 d of age were randomly divided into 2 groups (6 replicate pens per group, 2 piglets per pen). The piglets were fed a basal diet (the control group) and a basal diet supplemented with 400 mg/kg EO (a blend consisting of carvacrol, thymol, and cinnamaldehyde, the EO group) for 28 days. At the end of the experiment, one piglet per pen was randomly chosen to be sacrificed. Growth performance, hematology, plasma biochemical indices, antioxidant capacity, intestinal epithelial development and immunity, colonic volatile fatty acids (VFA), and microbiota were determined. The results indicated that the diet supplemented with EO significantly improved average daily feed intake (ADFI, p < 0.01) and average daily gain (ADG, p < 0.05) in the day 0 to 28 period. EO supplementation led to a significant decrease in plasma lysozyme (p < 0.05) and cortisol levels (p < 0.01). Additionally, EO significantly promoted jejunal goblet cells in the villus, jejunal mucosa ZO-1 mRNA expression, ileal villus height, and ileal villus height/crypt depth ratio in piglets (p < 0.05). The ileal mucosal TLR4 and NFκB p-p65/p65 protein expression were significantly inhibited in the EO group (p < 0.05). Colonic digesta microbiota analysis revealed that bacteria involving the Erysipelotrichaceae family, Holdemanella genus, Phascolarctobacterium genus, and Vibrio genus were enriched in the EO group. In conclusion, these findings indicate that the EO blend improves ADG and ADFI in the day 0 to 28 period, as well as intestinal epithelial development and intestinal immunity in early-weaned piglets, which provides a theoretical basis for the combined use of EO in weaned piglets.
Collapse
Affiliation(s)
- Yirui Shao
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Qingyun Peng
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Yuliang Wu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Changfeng Peng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410000, China
| | - Shanshan Wang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Lijun Zou
- Laboratory of Basic Biology, Hunan First Normal University, Changsha 410205, China
| | - Ming Qi
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Can Peng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hongnan Liu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Rui Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Correspondence:
| | - Xia Xiong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yulong Yin
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
8
|
Zeng Y, Dai X, Chen Q, Liu Y, Gifty ZB, Sun W, Tang Z. Effect of Dietary Pomelo Peel Powder on Growth Performance, Diarrhea, Immune Function, Antioxidant Function, Ileum Morphology, and Colonic Microflora of Weaned Piglets. Animals (Basel) 2022; 12:ani12223216. [PMID: 36428442 PMCID: PMC9687033 DOI: 10.3390/ani12223216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
This trial evaluated how dietary-accommodated pomelo peel powder (PPP) affected average daily feed intake (ADFI) and average daily gain (ADG), diarrhea, antioxidation, and colonic microbial in weaned piglets. Thirty piglets weaned at 28 d were divided into three groups: a basal diet (CON); a CON containing 75 mg/kg chlortetracycline (CTC); and a CON containing 8 g/kg (PPP). This trial had a period of 28 days. Piglets supplemented with PPP had higher ADFI and ADG than piglets in CTC and CON (p < 0.05). The diarrhea rate in PPP and CTC was lower than in CON in the 3rd and 4th weeks (p < 0.05). Serum superoxide dismutase and glutathione peroxidase enzyme activities, and total antioxidant capacity in PPP were higher than those in CON (p < 0.05). Serum interleukin (IL)-4, insulin-like growth factor-I, immunoglobulin (Ig)A, and IgG concentrations in the PPP and CTC groups were higher than those in the CON group (p < 0.05). Serum IL-1β, IL-8, IL-17, and interferon (IFN)-γ concentrations and the cecal pH in PPP were lower than those in CON (p < 0.05). Serum IL-1β, IFN-γ, and IgA concentrations of piglets in PPP were lower than in CTC (p < 0.05). The villus height and villus height/crypt depth of the ileum of piglets in PPP and CTC were higher than those in CON (p < 0.05), but there was no difference between PPP and CTC (p > 0.05). The Firmicutes and Cyanobacteria relative abundances in PPP and CTC (p < 0.05) were lower than those in CON, whereas the Bacteroidetes relative abundances in PPP and CTC were higher than those in CON. The Prevotellaceae relative abundance in CTC was higher than in CON (p < 0.05), whereas the Lactobacillaceae relative abundance in CTC was lower than in CON (p < 0.05). The Ruminococcaceae relative abundance in PPP was higher than in CON (p < 0.05), whereas the Veillonellaceae relative abundance in PPP was lower than in CON (p < 0.05). PPP can improve ADFI and ADG, relieve diarrhea, and enhance the colonic microflora of weaned piglets. Therefore, PPP is expected to replace CTC as a feed additive to alleviate weaning stress and ensure normal growth and development of piglets.
Collapse
Affiliation(s)
- Yan Zeng
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Xinrui Dai
- Hunan Institute of Microbiology, Changsha 410009, China
- Laboratory of Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Qingju Chen
- Hunan Institute of Microbiology, Changsha 410009, China
- Laboratory of Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Yubo Liu
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Ziema Bumbie Gifty
- Laboratory of Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Weizhong Sun
- Laboratory of Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Hunan Institute of Microbiology, Changsha 410009, China
- Laboratory of Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-1399-6192-900
| |
Collapse
|
9
|
An Encapsulated Organic Acid and Essential Oil Mixture Improves the Intestinal Health of Weaned Piglets by Altering Intestinal Inflammation and Antioxidative Capacity. Animals (Basel) 2022; 12:ani12182426. [PMID: 36139286 PMCID: PMC9495186 DOI: 10.3390/ani12182426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigates the effects of an encapsulated organic acid and essential oil mixture (OAEO) on the growth performance, immuno-antioxidant capacity and intestinal health of weaned piglets. In total, 120 weaned piglets (23 days of age; 6.96 ± 0.08 kg) were randomly allotted to four treatments (six replicates/group; five piglets/replicate): the control group (CON) was fed the basal diet (BD), the antibiotic growth promoters group (AGP) received the BD with 20 mg/kg colistin sulphate and 10 mg/kg bacitracin zinc, and OAEO1 and OAEO2 were fed the BD with 1000 mg/kg and 2000 mg/kg OAEO, respectively. The trial lasted 21 days and then one piglet per replicate was selected for sample collection. OAEO increased the average daily gain, spleen index, serum interleukin (IL)-10, immunoglobulin (Ig) G and IgA levels; serum superoxide dismutase and glutathione peroxidase (GPX) activities; and jejunal villus height (VH), VH/crypt depth, goblet cell number, and amylase and trypsin activities (p < 0.05) compared with CON but reduced the diarrhea rate, serum tumor necrosis factor (TNF)-α, malondialdehyde (MDA), and D-lactic acid contents and diamine oxidase (DAO) activity (p < 0.05). OAEO also increased the jejunal zonula occludens-1, occludin, claudin-1, mucin-2, nuclear factor erythroid 2-related factor 2 (Nrf2), GPX and IL-10 mRNA levels, GPX activity and IL-10 content (p < 0.05) compared with CON but reduced jejunal MDA, IL-1β and TNF-α contents and Toll-like receptor (TLR) 4, nuclear factor (NF)-κB and TNF-α mRNA levels (p < 0.05). In addition, AGP increased ADG, serum IgA level and GPX activity, jejunal trypsin activity and IL-10 content and mRNA level (p < 0.05) compared with CON but reduced the serum TNF-α content and DAO activity and jejunal NF-κB mRNA level (p < 0.05). Overall, OAEO as an alternative to AGP improved the growth performance, immuno-antioxidant status and gut health of weaned piglets partly via activating the Nrf2 signaling pathway and suppressing the TLR4/NF-κB signaling pathway.
Collapse
|
10
|
Song M, Zhang F, Fu Y, Yi X, Feng S, Liu Z, Deng D, Yang Q, Yu M, Zhu C, Zhu X, Wang L, Gao P, Shu G, Ma X, Jiang Q, Wang S. Tauroursodeoxycholic acid (TUDCA) improves intestinal barrier function associated with TGR5-MLCK pathway and the alteration of serum metabolites and gut bacteria in weaned piglets. J Anim Sci Biotechnol 2022; 13:73. [PMID: 35672805 PMCID: PMC9175448 DOI: 10.1186/s40104-022-00713-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid, is the main medicinal component of bear bile and is commonly used to treat a variety of hepatobiliary diseases. Meanwhile, TUDCA has been shown to modulate the intestinal barrier function and alleviate DSS-induced colitis in mice. However, the effect of TUDCA on the intestinal barrier of weaned piglets remains largely unclear. Methods The weaned piglets and porcine IPEC-J2 intestinal epithelial cells were used to investigate the effects of TUDCA on intestinal barrier function in weaned piglets and explore the possible underlying mechanisms. In vivo, 72 healthy weaned piglets were randomly allocated into 2 groups according to their gender and body weight, and piglets were fed the basal diet with 0 (control, CON) and 200 mg/kg TUDCA for 30 d, respectively. Three female and three male piglets reflecting the average bodyweight were slaughtered in each group and samples were collected. In vitro, IPEC-J2 cells were subjected to 100 μmol/L TUDCA to explore the possible underlying mechanisms. Results Our results demonstrated that dietary TUDCA supplementation significantly reduced the diarrhea incidence of weaned piglets, possibly attributing to the TUDCA-enhanced intestinal barrier function and immunity. In addition, TUDCA supplementation altered serum metabolites and the relative abundance of certain gut bacteria, which might contribute to the improved intestinal barrier function. Furthermore, the in-vitro results showed that TUDCA improved the E. coli-induced epithelial barrier impairment of IPEC-J2 cells and increased Takeda G-coupled protein receptor 5 (TGR5) protein expression. However, knockdown of TGR5 and inhibition of myosin light chain kinase (MLCK) pathway abolished the TUDCA-improved epithelial barrier impairment in E. coli-treated IPEC-J2 cells, indicating the involvement of TGR5-MLCK in this process. Conclusions These findings showed that TUDCA improved intestinal barrier function associated with TGR5-MLCK pathway and the alteration of serum metabolites and gut bacteria in weaned piglets, suggesting the potential application of TUDCA in improving gut health in piglet production.
Collapse
|
11
|
Yin L, Li J, Zhang Y, Yang Q, Yang C, Yi Z, Yin Y, Wang Q, Li J, Ding N, Zhang Z, Yang H, Yin Y. Changes in progenitors and differentiated epithelial cells of neonatal piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:265-276. [PMID: 34988308 PMCID: PMC8693152 DOI: 10.1016/j.aninu.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023]
Abstract
This study aimed to assess the changes of small intestinal morphology, progenitors, differentiated epithelial cells, and potential mechanisms in neonatal piglets. Hematoxylin and eosin staining of samples from 36 piglets suggested that dramatic changes were observed in the jejunum crypts depth and crypt fission index of neonatal piglets (P < 0.001). The number of intestinal stem cells (ISC) tended to increase (P < 0.10), and a decreased number of enteroendocrine cells appeared in the jejunal crypt on d 7 (P < 0.05). Furthermore, the mRNA expression of jejunal chromogranin A (ChgA) was down-regulated in d 7 piglets (P < 0.05). There was an up-regulation of the adult ISC marker gene of SPARC related modular calcium binding 2 (Smoc2), and Wnt/β-catenin target genes on d 7 (P < 0.05). These results were further verified in vitro enteroid culture experiments. A mass of hollow spheroids was cultured from the fetal intestine of 0-d-old piglets (P < 0.001), whereas substantial organoids with budding and branching structures were cultured from the intestine of 7-d-old piglets (P < 0.001). The difference was reflected by the organoid budding efficiency, crypt domains per organoid, and the surface area of the organoid. Furthermore, spheroids on d 0 had more Ki67-positive cells and enteroendocrine cells (P < 0.05) and showed a decreasing trend in the ISC and goblet cells (P < 0.10). Moreover, the mRNA expression of spheroids differed markedly from that of organoids, with low expression of intestinal differentiation gene (Lysozyme; P < 0.05), epithelial-specific markers (Villin, E-cadherin; P < 0.05), and adult ISC markers (leucine-rich repeat-containing G protein-coupled receptor 5 [Lgr5], Smoc2; P < 0.001), and up-regulation of fetal marker (connexin 43 [Cnx43]; P < 0.05). The mRNA expression of relevant genes was up-regulated, and involved in Wnt/β-catenin, epidermal growth factor (EGF), Notch, and bone morphogenetic protein (BMP) signaling on d 7 organoids (P < 0.05). Spheroids displayed low differentiated phenotype and high proliferation, while organoids exhibited strong differentiation potential. These results indicated that the conversion from the fetal progenitors (spheroids) to adult ISC (normal organoids) might largely be responsible for the fast development of intestinal epithelial cells in neonatal piglets.
Collapse
Affiliation(s)
- Lanmei Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jun Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.,State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou, Fujian, 363000, China
| | - Yitong Zhang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Qing Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Cuiyan Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhenfeng Yi
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yuebang Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Nengshui Ding
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou, Fujian, 363000, China
| | - Zhigang Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou, Fujian, 363000, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
12
|
Yin L, Li J, Wang M, Wang Q, Li J, Ding N, Yang H, Yin Y. Dietary high protein-induced diarrhea and intestinal inflammation by activation of NF-κB signaling in piglets. ACTA ACUST UNITED AC 2021; 7:1070-1077. [PMID: 34738037 PMCID: PMC8546374 DOI: 10.1016/j.aninu.2021.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/09/2021] [Accepted: 05/19/2021] [Indexed: 01/29/2023]
Abstract
The present study aimed to investigate whether inflammation-associated responses in piglets are induced by high protein (HP) through activating nuclear factor kappa B (NF-κB) signaling. Sixteen piglets (35 d of age, Duroc × [Landrace × Yorkshire], weaned at d 21, initial BW = 9.70 ± 0.11 kg) were allocated to 18% and 26% CP (HP group) at random, comprising 8 replicate pens per treatment. The piglets were slaughtered to collect intestinal tissues when apparent, persistent, and stable diarrhea syndromes happened (on d 12). No significant differences were observed in their growth performance (P > 0.05), but reduction by 19.11%, 25.31%, 23.64% of ADFI, ADG, and G:F, respectively was detected in the HP group. The HP group had greater (P = 0.002) diarrhea rates. Furthermore, dietary HP had lower ileal villus height (VH; P = 0.048), ratio of villus height to crypt depth (VH/CD ratio; P = 0.016), and colonic CD (P = 0.034), as well as had the trend (P = 0.075) to reduce the ileal villus absorptive area. Moreover, HP diets significantly elevated the goblet cell numbers in the ileal villi (P = 0.016) and colonic crypts (P < 0.001) and up-regulated (P = 0.012) the mRNA expression of mucin2 (Muc2) in the ileum. In addition, HP diets increased the myeloperoxidase concentration in the ileum (P = 0.002) and colon (P = 0.007) of piglets. Dietary HP significantly down-regulated the mRNA expression of tumor necrosis factor-α (TNF-α; P < 0.001) in the ileum, induced nitric oxide synthase (iNOS; P = 0.040) and interleukin-22 (IL-22; P = 0.008) in the colon, and inclined to down-regulate interleukin-1β (IL-1β; P = 0.076) expression in the colon. The relative protein abundance of Galectin-3 (P = 0.046) in the colon and the ratio of phosphorylation NF-κB to NF-κB (p-NF-κB/NF-κB ratio) in the ileum of HP piglets were also greater (P = 0.038). These results suggest that dietary HP may cause diarrhea in piglets by activating NF-κB signaling induced intestinal inflammation.
Collapse
Affiliation(s)
- Lanmei Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jun Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong Biological Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Zhangzhou 363000, China
| | - Meiwei Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Nengshui Ding
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong Biological Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Zhangzhou 363000, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
13
|
Zhou J, Qin Y, Xiong X, Wang Z, Wang M, Wang Y, Wang QY, Yang HS, Yin Y. Effects of iron, vitamin A, and the interaction between the two nutrients on intestinal development and cell differentiation in piglets. J Anim Sci 2021; 99:6360813. [PMID: 34467981 DOI: 10.1093/jas/skab258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the effects of iron, vitamin A (VA) and their interaction on intestinal development and differentiation of cells in suckling piglets. Therefore, 32 Duroc × Landrace × Yorkshire 0-d-old newborn boars with similar body weights were randomly divided into four groups, with eight replicates in each group and one pig in each replicate. All the piglets were breastfed. In addition, the piglets were given normal saline (CON group) or ferrous sulfate (OAFe group) or VA (VA group) or ferrous sulfate and VA (OAFe + VA group) on the 2nd, 7th, 12th, and 17th day, respectively. The piglets were then slaughtered on the 21st day, and intestinal samples were collected. The results showed that: 1) iron (P < 0.001) significantly increased the length, weight, relative weight, and the length to weight ratio of the small intestine. On the other hand, VA had a significant effect on the weight to length ratio (P = 0.015) and relative weight (P < 0.001) of the small intestine; 2) with regard to intestinal morphology, supplementation with iron (P <0.05) had obvious effects on the villus height (VH), crypt depth (CD), villus width (VW), and surface area. Additionally, both VA and interaction of VA and iron increased the VH (P < 0.05) and surface area (P = 0.001). The results also showed that iron (P < 0.01) increased the number of crypt goblet cells, Ki67-positive cells, and endocrine cells. Moreover, both VA and the interaction between VA and iron increased the number of endocrine cells in the villi (P = 0.05); 3) With regard to the mRNA expression levels of stem cell differentiation marker genes, iron (P < 0.05) decreased the expression of trophinin 2 (Trop2), leucine-rich repeat containing G protein-coupled receptor 5 positive (Lgr5+), male-specific lethal 1(Msl1), BMI 1 proto-oncogene, polycomb ring finger (Bmi1), and achaete-scute family bHLH transcription factor 2 (Ascl2). On the other hand, VA increased the expression of Ascl2 (P = 0.001) although the interaction of VA and iron (P < 0.05) had an effect on the expression of secreted phosphoprotein 1 (Spp1) and Bmi1. In addition, VA decreased the gene or mRNA expression of aconitase 1 (Aco1; P < 0.001), transferrin receptor (TFRC; P = 0.001), and solute carrier family 11 member 2 (DMT1; P = 0.003) in the Iron Reactive Element/Iron Regulatory Protein (IRE/IRP) signaling pathway although iron and the interaction of VA and iron had no effect on the genes' expression. The results therefore showed that VA, iron, and their interaction can promote intestinal development and epithelial cell differentiation in piglets.
Collapse
Affiliation(s)
- Jing Zhou
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yan Qin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xia Xiong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Zhaobin Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Min Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yancan Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Qiye Y Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Huansheng S Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| |
Collapse
|
14
|
Su J, Zhang W, Ma C, Xie P, Blachier F, Kong X. Dietary Supplementation With Xylo-oligosaccharides Modifies the Intestinal Epithelial Morphology, Barrier Function and the Fecal Microbiota Composition and Activity in Weaned Piglets. Front Vet Sci 2021; 8:680208. [PMID: 34222403 PMCID: PMC8241929 DOI: 10.3389/fvets.2021.680208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
The present study determined the effects of dietary xylo-oligosaccharides (XOS) supplementation on the morphology of jejunum and ileum epithelium, fecal microbiota composition, metabolic activity, and expression of genes related to colon barrier function. A total of 150 piglets were randomly assigned to one of five groups: a blank control group (receiving a basal diet), three XOS groups (receiving the basal diet supplemented with 100, 250, and 500 g/t XOS, respectively), as well as a positive control group, used as a matter of comparison, that received the basal diet supplemented with 0.04 kg/t virginiamycin, 0.2 kg/t colistin, and 3,000 mg/kg ZnO. The trial was carried out for 56 days. The results showed that the lowest dose tested (100 g/t XOS) increased (P < 0.05) the ileal villus height, the relative amount of Lactobacillus and Bifidobacterium spp., and the concentration of acetic acid and short-chain fatty acid in feces when compared with the blank control group. In conclusion, dietary 100 g/t XOS supplementation modifies the intestinal ecosystem in weaned piglets in an apparently overall beneficial way.
Collapse
Affiliation(s)
- Jiayi Su
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wanghong Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Cui Ma
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Peifeng Xie
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Francois Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
15
|
Zheng L, Duarte ME, Sevarolli Loftus A, Kim SW. Intestinal Health of Pigs Upon Weaning: Challenges and Nutritional Intervention. Front Vet Sci 2021; 8:628258. [PMID: 33644153 PMCID: PMC7906973 DOI: 10.3389/fvets.2021.628258] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
The primary goal of nursery pig management is making a smooth weaning transition to minimize weaning associated depressed growth and diseases. Weaning causes morphological and functional changes of the small intestine of pigs, where most of the nutrients are being digested and absorbed. While various stressors induce post-weaning growth depression, the abrupt change from milk to solid feed is one of the most apparent challenges to pigs. Feeding functional feed additives may be viable solutions to promote the growth of nursery pigs by enhancing nutrient digestion, intestinal morphology, immune status, and by restoring intestinal balance. The aim of this review was to provide available scientific information on the roles of functional feed additives in enhancing intestinal health and growth during nursery phase. Among many potential functional feed additives, the palatability of the ingredient and the optimum supplemental level are varied, and these should be considered when applying into nursery pig diets. Considering different stressors pigs deal with in the post-weaning period, research on nutritional intervention using a single feed additive or a combination of different additives that can enhance feed intake, increase weight gain, and reduce mortality and morbidity are needed to provide viable solutions for pig producers. Further research in relation to the feed palatability, supplemental level, as well as interactions between different ingredients are needed.
Collapse
Affiliation(s)
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|