1
|
Song Y, Li D, Su D, Jiang T, Li L, Zhan S, Zhong T, Guo J, Cao J, Li L, Zhang H, Wang L. Short-term heat exposure affects thermogenesis and mitophagy in goat brown adipocytes. BMC Genomics 2025; 26:272. [PMID: 40108509 PMCID: PMC11921555 DOI: 10.1186/s12864-025-11467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) has a significant impact in newborn goats on maintaining body temperature through non-shivering thermogenesis in response to cold exposure. However, the roles of heat treatment on BAT thermogenesis are still limited. RESULTS This study focused on the effects of short-term heat exposure on goat brown adipocytes. We found that the content of mitochondria and the proteins of UCP1 and PGC1α were increased after 12 h of heat exposure. Additionally, the triglyceride (TG) content was significantly decreased after 1, 2, 6 h of heat exposure. Furthermore, RNA-seq analysis of brown adipocytes after 12 h of heat exposure identified 1091 differentially expressed genes (DEGs). The KEGG enrichment analysis were mainly enriched in thermogenesis, fatty acid metabolism and mitophagy. In addition, we found that the amount of mitophagosomes and expression levels of mitophagy-related protein (LC3BII/LC3BI, BNIP3, and BECN) were elevated after 12 h of heat treatment. CONCLUSION These findings collectively indicate that heat exposure enhances the thermogenic capacity and mitophagy level of goat brown adipocytes. Our study provides evidence that heat exposure facilitates adaptive thermogenesis in goat brown adipocytes.
Collapse
Affiliation(s)
- Yulong Song
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Die Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Duo Su
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Tingting Jiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Longrui Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Jiaxue Cao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China.
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China.
| |
Collapse
|
2
|
Liu X, Huang C, Jiang T, Sun X, Zhan S, Zhong T, Guo J, Dai D, Wang Y, Li L, Zhang H, Wang L. LncDGAT2 is a novel positive regulator of the goat adipocyte thermogenic gene program. Int J Biol Macromol 2023; 245:125465. [PMID: 37355065 DOI: 10.1016/j.ijbiomac.2023.125465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/29/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Brown and beige adipose thermogenesis are important for newborn mammals to maintain their body temperature. In addition, these thermogenic fats are regulated by multiple molecular interactions. How the long non-coding RNAs (lncRNAs) regulate adipose thermogenesis in newborn mammals upon cold exposure remains unexplored. Here, we identified lncRNAs induced by cold exposure in brown adipose tissue (BAT) of newborn goats and found that lncDGAT2 was enriched in BAT after cold exposure. Functional studies revealed that lncDGAT2 promoted brown and white adipocyte differentiation as well as thermogenic gene expression. Additionally, PRDM4 directly bound the lncDGAT2 promoter to activate the transcription of lncDGAT2 and the PRDM4-lncDGAT2 axis was essential for the brown adipocyte thermogenic gene program. These findings provide evidence for lncRNA and transcription factor regulatory functions in controlling adipose thermogenesis and energy metabolism of newborn goats.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Chunhua Huang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Tingting Jiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Xueliang Sun
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.
| |
Collapse
|
3
|
Liu X, Fan W, Zhang X, Zhan S, Zhong T, Guo J, Wang Y, Cao J, Li L, Zhang H, Wang L. Maternal L-carnitine supplementation promotes brown adipose tissue thermogenesis of newborn goats after cold exposure. FASEB J 2022; 36:e22461. [PMID: 35838582 DOI: 10.1096/fj.202200637r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Brown adipose tissue (BAT) is an important component of energy expenditure and necessary to maintain body temperature for newborn mammals. In the previous study, we found that L-carnitine was enriched in BAT and promoted BAT adipogenesis and thermogenesis in goat brown adipocytes. However, whether dietary L-carnitine regulates BAT heat production and energy expenditure in lambs remains unclear. In this study, maternal L-carnitine supplementation elevated the rectal temperature, as well as the expression of UCP1 and mitochondrial DNA content to promote BAT thermogenesis in newborn goats. Moreover, maternal L-carnitine supplementation increased the levels of triglycerides (TG), non-esterified fatty acids (NEFA), and lactate in plasma, as well as the content of lipid droplet and glycogen in BAT of newborn goats. Lipidomic analysis showed that maternal L-carnitine supplementation remodeled the lipid composition of BAT in newborn goats. L-carnitine significantly increased the levels of TG and diglyceride (DG) and decreased the levels of glycerophospholipids and sphingolipids in BAT. Further studies showed that L-carnitine promoted TG and glycogen deposition in brown adipocytes through AMPKα. Our results indicate that maternal L-carnitine supplementation promotes BAT development and thermogenesis in newborn goats and provides new evidence for newborn goats to maintain body temperature in response to cold exposure.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Wenli Fan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Xujia Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
4
|
Major differences between single or twin hair lambs in the immediate postpartum period: Metabolic and thermodynamic patterns detected by infrared thermography. J Therm Biol 2022; 107:103258. [DOI: 10.1016/j.jtherbio.2022.103258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022]
|
5
|
Zhang CZ, Sang D, Wu BS, Li SL, Zhang CH, Jin L, Li JX, Gu Y, Ga NMR, Hua M, Sun HZ. Effects of dietary supplementation with N-carbamylglutamate on maternal endometrium and fetal development during early pregnancy in Inner Mongolia white cashmere goats. Anim Sci J 2022; 93:e13693. [PMID: 35258155 DOI: 10.1111/asj.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
Abstract
This study investigated the effects of dietary supplementation with N-carbamylglutamate (NCG) on maternal endometrium and fetal development during early pregnancy of Inner Mongolia white cashmere goats. Forty-eight pregnant Inner Mongolia white cashmere goats (average age 3 years old, average lactation parity 2, and average body weight 43.81 ± 2.66 kg) were randomly allocated to three groups: a basal diet (control group, n = 16), a basal diet plus 0.30-g NCG/d (NCG1 group, n = 16), and a basal diet plus 0.40-g NCG/d (NCG2 group, n = 16). All of the does were housed in individual pens and the NCG treatment was conducted from Days 0 to 90 of pregnancy. At Days 17 and 90 of pregnancy, six representative pregnant does in each group were slaughtered. The current study results demonstrated that maternal NCG administration during early pregnancy effectively increased the arginine family of amino acids and the glucogenic amino acids concentrations and promoted the mRNA expression of osteopontin (OPN), αv and β3 integrins, and endometrial development of Inner Mongolia white cashmere goats. The supplementation improved the fetal brown adipose tissue (BAT) stores and the mRNA expression of UCP-1 and BMP7, thereby helping to the fetal early development.
Collapse
Affiliation(s)
- Chong Zhi Zhang
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Dan Sang
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Bao Sheng Wu
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Sheng Li Li
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Chun Hua Zhang
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Lu Jin
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Jin Xia Li
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Ying Gu
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Na Mei Ri Ga
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Mei Hua
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Hai Zhou Sun
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| |
Collapse
|
6
|
McCarthy N, Brougham BJ, Swinbourne AM, Weaver AC, Kelly JM, Gatford KL, Kleemann DO, van Wettere WHEJ. Maternal oral supplementation with citrulline increases plasma citrulline but not arginine in pregnant Merino ewes and neonatal lambs. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Posey EA, Sun Y. L-Arginine Nutrition and Metabolism in Ruminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:177-206. [PMID: 34807443 DOI: 10.1007/978-3-030-85686-1_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
L-Arginine (Arg) plays a central role in the nitrogen metabolism (e.g., syntheses of protein, nitric oxide, polyamines, and creatine), blood flow, nutrient utilization, and health of ruminants. This amino acid is produced by ruminal bacteria and is also synthesized from L-glutamine, L-glutamate, and L-proline via the formation of L-citrulline (Cit) in the enterocytes of young and adult ruminants. In pre-weaning ruminants, most of the Cit formed de novo by the enterocytes is used locally for Arg production. In post-weaning ruminants, the small intestine-derived Cit is converted into Arg primarily in the kidneys and, to a lesser extent, in endothelial cells, macrophages, and other cell types. Under normal feeding conditions, Arg synthesis contributes 65% and 68% of total Arg requirements for nonpregnant and late pregnany ewes fed a diet with ~12% crude protein, respectively, whereas creatine production requires 40% and 36% of Arg utilized by nonpregnant and late pregnant ewes, respectively. Arg has not traditionally been considered a limiting nutrient in diets for post-weaning, gestating, or lactating ruminants because it has been assumed that these animals can synthesize sufficient Arg to meet their nutritional and physiological needs. This lack of a full understanding of Arg nutrition and metabolism has contributed to suboptimal efficiencies for milk production, reproductive performance, and growth in ruminants. There is now considerable evidence that dietary supplementation with rumen-protected Arg (e.g., 0.25-0.5% of dietary dry matter) can improve all these production indices without adverse effects on metabolism or health. Because extracellular Cit is not degraded by microbes in the rumen due to the lack of uptake, Cit can be used without any encapsulation as an effective dietary source for the synthesis of Arg in ruminants, including dairy and beef cows, as well as sheep and goats. Thus, an adequate amount of supplemental rumen-protected Arg or unencapsulated Cit is necessary to support maximum survival, growth, lactation, reproductive performance, and feed efficiency, as well as optimum health and well-being in all ruminants.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| | - Fuller W Bazer
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Carey Satterfield
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kyler R Gilbreath
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Erin A Posey
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
8
|
Gilbreath KR, Bazer FW, Satterfield MC, Wu G. Amino Acid Nutrition and Reproductive Performance in Ruminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:43-61. [PMID: 33770402 DOI: 10.1007/978-3-030-54462-1_4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amino acids (AAs) are essential for the survival, growth and development of ruminant conceptuses. Most of the dietary AAs (including L-arginine, L-lysine, L-methionine and L-glutamine) are extensively catabolized by the ruminal microbes of ruminants to synthesize AAs and microbial proteins (the major source of AAs utilized by cells in ruminant species) in the presence of sufficient carbohydrates (mainly cellulose and hemicellulose), nitrogen, and sulfur. Results of recent studies indicate that the ruminal microbes of adult steers and sheep do not degrade extracellular L-citrulline and have a limited ability to metabolize extracellular L-glutamate due to little or no uptake by the cells. Although traditional research in ruminant protein nutrition has focused on AAs (e.g., lysine and methionine for lactating cows) that are not synthesized by eukaryotic cells, there is growing interest in the nutritional and physiological roles of AAs (e.g., L-arginine, L-citrulline, L-glutamine and L-glutamate) in gestating ruminants (e.g., cattle, sheep and goats) and lactating dairy cows. Results of recent studies show that intravenous administration of L-arginine to underfed, overweight or prolific ewes enhances fetal growth, the development of brown fat in fetuses, and the survival of neonatal lambs. Likewise, dietary supplementation with either rumen-protected L-arginine or unprotected L-citrulline to gestating sheep or beef cattle improved embryonic survival. Because dietary L-citrulline and L-glutamate are not degraded by ruminal microbes, addition of these two amino acids may be a new useful, cost-effective method for improving the reproductive efficiency of ruminants.
Collapse
Affiliation(s)
- Kyler R Gilbreath
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - M Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|