1
|
Xu J, Jiang W, Hu T, Long Y, Shen Y. NEDD4 and NEDD4L: Ubiquitin Ligases Closely Related to Digestive Diseases. Biomolecules 2024; 14:577. [PMID: 38785984 PMCID: PMC11117611 DOI: 10.3390/biom14050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Protein ubiquitination is an enzymatic cascade reaction and serves as an important protein post-translational modification (PTM) that is involved in the vast majority of cellular life activities. The key enzyme in the ubiquitination process is E3 ubiquitin ligase (E3), which catalyzes the binding of ubiquitin (Ub) to the protein substrate and influences substrate specificity. In recent years, the relationship between the subfamily of neuron-expressed developmental downregulation 4 (NEDD4), which belongs to the E3 ligase system, and digestive diseases has drawn widespread attention. Numerous studies have shown that NEDD4 and NEDD4L of the NEDD4 family can regulate the digestive function, as well as a series of related physiological and pathological processes, by controlling the subsequent degradation of proteins such as PTEN, c-Myc, and P21, along with substrate ubiquitination. In this article, we reviewed the appropriate functions of NEDD4 and NEDD4L in digestive diseases including cell proliferation, invasion, metastasis, chemotherapeutic drug resistance, and multiple signaling pathways, based on the currently available research evidence for the purpose of providing new ideas for the prevention and treatment of digestive diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yueming Shen
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha 410000, China; (J.X.); (W.J.); (T.H.); (Y.L.)
| |
Collapse
|
2
|
Lv M, Mu J, Xing Y, Zhou X, Ge J, Gong D, Geng T, Zhao M. Glucose inhibits the inflammatory response in goose fatty liver by increasing the ubiquitination level of PKA. J Anim Sci 2024; 102:skae239. [PMID: 39158360 PMCID: PMC11375046 DOI: 10.1093/jas/skae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024] Open
Abstract
Protein kinase A (PKA) plays an important role in cellular life activities. Recently, PKA was found to bind to the inhibitor of nuclear factor-kappaB (IκB), a key protein in the nuclear factor-kappaB (NF-κB) pathway, to form a complex involved in the regulation of inflammatory response. However, the role of PKA in the anti-inflammatory of goose fatty liver is still unclear. A total of 14 healthy 70-d-old male Lander geese were randomly divided into a control group and an overfeeding group. Inflammation level was analyzed by histopathological method in the liver. The mRNA and protein abundance of PKA and tumor necrosis factor-alpha (TNFα), as well as the ubiquitination level of PKA, were detected. Moreover, goose primary hepatocytes were cotreated with glucose, harringtonine, and carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG132). Finally, the co-immunoprecipitated samples of PKA from the control and overfeeding group were used for protein mass spectrometry. The results showed that no difference in PKA mRNA expression was observed (P > 0.05), while the PKA protein level in the overfed group was significantly reduced (P < 0.05) when compared with the control group. The ubiquitination level of PKA was higher than that of the control group in fatty liver. The mRNA expression of PKA was elevated but protein abundance was reduced in goose primary hepatocytes with 200 mmol/L glucose treatment (P < 0.05). The PKA protein abundance was dramatically reduced in hepatocytes treated with harringtonine (P < 0.01) when compared with the glucose-supplemented group. Nevertheless, MG132 tended to alleviate the inhibitory effect of harringtonine on PKA protein abundance (P = 0.081). There was no significant difference in TNFα protein level among glucose-treated groups and control (P > 0.05). Protein mass spectrometry analysis showed that 29 and 76 interacting proteins of PKA were screened in goose normal and fatty liver, respectively. Validation showed that PKA interacted with the E3 ubiquitination ligases ring finger protein 135 (RNF135) and potassium channel modulatory factor 1 (KCMF1). In summary, glucose may inhibit the inflammatory response in goose fatty liver by increasing the ubiquitination level of PKA. Additionally, RNF135 and KCMF1 may be involved in the regulation of PKA ubiquitination level as E3 ubiquitination ligases.
Collapse
Affiliation(s)
- Mengqing Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Ji'an Mu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Ya Xing
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Xiaoyi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Jing Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| |
Collapse
|
3
|
Han G, Kim J, Kim JM, Kil D. Transcriptomic analysis of the liver in aged laying hens with different eggshell strength. Poult Sci 2022; 102:102217. [PMID: 36343436 PMCID: PMC9646969 DOI: 10.1016/j.psj.2022.102217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/06/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Eggshell is composed of a very ordered and mineralized structure and is important for egg quality. Eggshell strength is particularly important because of its direct association with economic outcomes and egg safety. Various factors related to laying hens and their environment affects eggshell strength. However, the molecular mechanisms of liver functions related to decreased eggshell strength of aged laying hens are largely unknown. Therefore, this study aimed to identify potential factors affecting eggshell strength in aged laying hens at the hepatic transcriptomic level. A total of five hundred 92-wk-old Hy-line Brown laying hens were screened to select those exhibiting the greatest variation in eggshell strength. Based on the final eggshell strength, 12 hens producing eggs with strong eggshell strength (SES) and weak eggshell strength (WES) were finally selected (n = 6) for liver tissue sampling. The RNA-sequencing was performed to identify differentially expressed genes (DEGs) between the 2 groups. We identified a total of 2,084 DEGs, of which 1,358 genes were upregulated and 726 genes were downregulated in the WES group compared with SES group. According to the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, the DEGs indicated the mammalian target of rapamycin signaling pathway, the Janus kinase-signal transducer and activator of transcription pathway, the mitogen‑activated protein kinase signaling pathway, and the insulin resistance pathways. Genes related to fatty liver disease were upregulated in WES group compared with SES group. In addition, expression of several genes associated with oxidative stress and bone resorption activity was altered in aged laying hens with different eggshell strength. Overall, these findings contribute to the identification of genes involved in different intensity of eggshell strength, enabling more understanding of the hepatic molecular mechanism underlying in decreased eggshell strength of aged laying hens.
Collapse
|
4
|
The Role of NEDD4 E3 Ubiquitin–Protein Ligases in Parkinson’s Disease. Genes (Basel) 2022; 13:genes13030513. [PMID: 35328067 PMCID: PMC8950476 DOI: 10.3390/genes13030513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023] Open
Abstract
Parkinson’s disease (PD) is a debilitating neurodegenerative disease that causes a great clinical burden. However, its exact molecular pathologies are not fully understood. Whilst there are a number of avenues for research into slowing, halting, or reversing PD, one central idea is to enhance the clearance of the proposed aetiological protein, oligomeric α-synuclein. Oligomeric α-synuclein is the main constituent protein in Lewy bodies and neurites and is considered neurotoxic. Multiple E3 ubiquitin-protein ligases, including the NEDD4 (neural precursor cell expressed developmentally downregulated protein 4) family, parkin, SIAH (mammalian homologues of Drosophila seven in absentia), CHIP (carboxy-terminus of Hsc70 interacting protein), and SCFFXBL5 SCF ubiquitin ligase assembled by the S-phase kinase-associated protein (SKP1), cullin-1 (Cul1), a zinc-binding RING finger protein, and the F-box domain/Leucine-rich repeat protein 5-containing protein FBXL5), have been shown to be able to ubiquitinate α-synuclein, influencing its subsequent degradation via the proteasome or lysosome. Here, we explore the link between NEDD4 ligases and PD, which is not only via α-synuclein but further strengthened by several additional substrates and interaction partners. Some members of the NEDD4 family of ligases are thought to crosstalk even with PD-related genes and proteins found to be mutated in familial forms of PD. Mutations in NEDD4 family genes have not been observed in PD patients, most likely because of their essential survival function during development. Following further in vivo studies, it has been thought that NEDD4 ligases may be viable therapeutic targets in PD. NEDD4 family members could clear toxic proteins, enhancing cell survival and slowing disease progression, or might diminish beneficial proteins, reducing cell survival and accelerating disease progression. Here, we review studies to date on the expression and function of NEDD4 ubiquitin ligases in the brain and their possible impact on PD pathology.
Collapse
|
5
|
Lin X, Xing Y, Zhang Y, Dong B, Zhao M, Wang J, Geng T, Gong D, Zheng Y, Liu L. Glucose participates in the formation of goose fatty liver by regulating the expression of miRNA-33/CROT. Anim Sci J 2021; 92:e13674. [PMID: 34935255 DOI: 10.1111/asj.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022]
Abstract
Glucose oversupply promotes formation of fatty liver, and fatty liver is usually accompanied with hyperglycemia. However, the mechanism by which glucose promotes formation of fatty liver is not very clear. In this study, fatty liver was successfully induced in Landes goose by 19 days of overfeeding with corn-based feed, the overfed geese had a significantly higher level of blood glucose than the normally fed geese (control group). In goose primary liver cells, high level of glucose promoted fat deposition and induced the expression of SREBF2(or SREBP2), a key regulator of lipid metabolism, and its intronic gene, miR-33. Moreover, overexpression of miRNA-33(miR-33) promotes lipid accumulation in goose primary liver cells. Consistently, miR-33 inhibitor suppressed glucose induced lipid accumulation in liver cells. Interestingly, the relative abundance of miR-33 in goose fatty liver was significantly higher than that in normal liver, while the relative mRNA and protein abundances of CROT, the target gene of miR-33, in goose fatty liver were significantly lower than those in goose normal liver. Taken together, these findings suggest that miR-33 mediates glucose promotion of lipid accumulation in goose primary liver cells, and that glucose participates in formation of goose fatty liver by regulating the expression of miR-33/CROT.
Collapse
Affiliation(s)
- Xiao Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ya Xing
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yihui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Biao Dong
- Department of Animal Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jian Wang
- Department of Animal Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yun Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|