1
|
Quan K, Li J, Han H, Liu K, Shi H, Wang H, Jin M, Sun W, Wei C. Two-Generation Crossbreeding of White-Headed Suffolk and Small-Tailed Han Sheep: Heterosis, Sustainable Production Traits, and Morphological Features in Central China. Animals (Basel) 2025; 15:1071. [PMID: 40218464 PMCID: PMC11987929 DOI: 10.3390/ani15071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025] Open
Abstract
To address the bottleneck in meat production efficiency within China's mutton sheep industry, this study established a two-generation crossbreeding program between WHS rams and STH ewes. Hybrid offspring (F1 and BC1) were evaluated for growth performance, slaughter traits, meat quality, and reproductive performance. The F1 generation exhibited significant improvements over STH in 6-month body weight (52.3 kg, +27.3%), dressing percentage (56.1%, +6.3%), and feed efficiency ratio (FER) of 4.6 (p < 0.05). The BC1 generation shows a mixed state of paternal and maternal characteristics and further enhanced these traits, achieving a 6-month body weight of 55.2 kg (+5.4% vs. F1), a dressing percentage of 58.3%, and an optimized gain-to-feed ratio (G:F) of 4.2 (-8.7%). Meat quality parameters, including shear force (32.5 N vs. 41.6 N in F1 vs. STH) and intramuscular fat content (4.5% vs. 3.8% in F1 vs. STH), demonstrated superior tenderness and marbling. Despite a decline in lambing rate (F1: 178%; BC1: 142%), the hybrids combined the dam's adaptability with the sire's meat traits, forming a novel germplasm for sustainable mutton production. This study provides a replicable model for balancing genetic improvement and ecological sustainability in central China.
Collapse
Affiliation(s)
- Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (K.Q.); (J.L.); (H.H.); (K.L.); (H.S.)
| | - Jun Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (K.Q.); (J.L.); (H.H.); (K.L.); (H.S.)
| | - Haoyuan Han
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (K.Q.); (J.L.); (H.H.); (K.L.); (H.S.)
| | - Kun Liu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (K.Q.); (J.L.); (H.H.); (K.L.); (H.S.)
| | - Huibin Shi
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (K.Q.); (J.L.); (H.H.); (K.L.); (H.S.)
| | - Huihua Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (M.J.)
| | - Meilin Jin
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (M.J.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Caihong Wei
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (M.J.)
| |
Collapse
|
2
|
Zhang X, Liu X, Xie K, Pan Y, Liu F, Hou F. Effects of different fiber levels of energy feeds on rumen fermentation and the microbial community structure of grazing sheep. BMC Microbiol 2025; 25:180. [PMID: 40165064 PMCID: PMC11956436 DOI: 10.1186/s12866-024-03644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/08/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Rumen microbial community structure and stability are very important for ruminant health, growth and development, and livestock product yield. Dietary composition and nutritional structure affect microbial diversity and richness. The purpose of this study was to evaluate the effects of different fiber levels of energy feed on the rumen microflora and fermentation function of grazing sheep in salinized sown pasture, to reveal the response of the main microflora of sheep rumen at the phylum and genus levels to different fiber levels of energy feed and to analyze the internal mechanism to provide a reference for the selection of energy feed and the improvement of the production performance of grazing livestock. RESULTS The fiber level of energy feed affects the rumen fermentation and rumen microbial community structure of grazing sheep. Low-fiber-energy feeds significantly increased the relative abundance of Actinobacteria, while the relative abundances of Cyanobacteria, Ruminococcaceae_UCG_010, Ruminococcaceae_NK4A214_group, and Elusimicrobium significantly decreased, adjusting the relationship between the flora toward cooperation. High-fiber-energy feeds significantly increased the concentration of VFAs, significantly decreased the relative abundances of Proteobacteria, Ruminococcaceae_NK4A214_group and Rikenellaceae_RC9_gut_group, adjusted the relationship between the flora to compete, and promoted the enrichment of metabolic pathways such as "Protein Digestion and Absorption," "Nitrogen Metabolism," "Starch and Sucrose Metabolism," and "Degradation of Other Sugars." CONCLUSIONS Supplementary feeding of high and low fiber energy feeds reduced the pH value of rumen fluid and the richness and diversity of microorganisms in grazing sheep, reduced the relative abundance of some harmful microorganisms, affected the metabolic activities of some fiber-digesting bacteria, regulated the interaction and competition between bacteria, increased the content of volatile fatty acids (VFAs) and the relative abundance of metabolic-related microorganisms in the supplementary feeding group, and enriched the metabolic-related pathways. However, further understand the mechanism of the effect of fiber level on the rumen of sheep, it is necessary to conduct in-depth analysis using research methods such as transcriptomics, proteomics and metabolomics.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xulei Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Kaili Xie
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yueting Pan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fuyao Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
- , Lanzhou, P. R. China.
| |
Collapse
|
3
|
Briones JM, Ball BK, Jena S, Lescun TB, Chan DD, Brubaker DK. Rumenomics: Evaluation of rumen metabolites from healthy sheep identifies differentially produced metabolites across sex, age, and weight. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636747. [PMID: 39975146 PMCID: PMC11839056 DOI: 10.1101/2025.02.05.636747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background The rumen harbors a diverse and dynamic microbiome vital in digesting vegetation into metabolic byproducts for energy and general biological function. Although previous studies have reported connections between the rumen and the overall health of the sheep, the exact biological process by which this occurs is not well understood. Therefore, our study aimed to quantify sheep rumen metabolites to determine if enriched biological pathways are differentiable across phenotypic features of sex, age, and weight. Results We collected and quantified metabolites of rumen samples from sixteen sheep using liquid chromatography-tandem mass spectrometry. We performed a series of univariate and multivariate statistical analyses to interpret the rumen metabolomics data. To identify metabolic pathways associated with the phenotypic features of sex, weight, and age, we used MetaboAnalyst, which identified amino acid metabolism as a distinguishing factor. Among the pathways, phenylalanine metabolism emerged as a key pathway differentiating sheep based on sex and age. Additionally, phenylalanine, tyrosine, and tryptophan biosynthesis were exclusively associated with age. In univariate linear models, we also discovered that these amino acid and protein pathways were associated with weight by age-corrected effect. Finally, we identified arginine and proline biosynthesis as a pathway linked to metabolites with weight. Conclusion Our study identified differential pathways based on the sex, age, and weight features of sheep. Metabolites produced by the rumen may act as an indicator for sheep health and other ruminants. These findings encourage further investigation of the differentially produced metabolites to assess overall sheep health.
Collapse
Affiliation(s)
- Javier Munoz Briones
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
| | - Brendan K. Ball
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Smrutiti Jena
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Timothy B. Lescun
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Deva D. Chan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Douglas K. Brubaker
- Center for Global Health & Diseases, Department of Pathology, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Blood Heart Lung Immunology Research Center, University Hospitals, Cleveland, OH, USA
| |
Collapse
|
4
|
Zhang Y, Cheng J, Lin C, Li F, Zhang X, Li C, Zhang D, Yang X, Xu D, Zhao Y, Zhao L, Li X, Tian H, Weng X, Wang W. Spatial heterogeneity determines the gastrointestinal microbiome signatures and ecological processes that govern bacterial community assembly in sheep. Microbiol Spectr 2025; 13:e0111024. [PMID: 39714160 PMCID: PMC11792493 DOI: 10.1128/spectrum.01110-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/24/2024] [Indexed: 12/24/2024] Open
Abstract
Sheep are one of the globally significant livestock, providing meat, dairy products, and wool for human life, playing an indispensable role in human civilization. Despite significant advancements in microbiome research in recent years, most studies have focused solely on the rumen, lacking a comprehensive study covering the microbiome of different gastrointestinal tract (GIT) regions in sheep. In this study, we collected 338 samples from 10 different regions of the sheep GIT and systematically investigated their microbiome signatures, including community structure, enterotypes, interactions among taxa, and microbial community assembly. Our results showed that the bacterial diversity of sheep GIT exhibited a U-shaped pattern along the GIT, with the lowest diversity in the jejunum. The bacterial community composition and enterotype varied along the GIT, mainly divided into three distinct groups (four-chambered stomach, small intestine, and large intestine). The rumen had the highest total number of bacterial taxa, unique taxa, and unique functions, while the enterotypes were the same in the three regions of the large intestine. The bacterial co-occurrence networks differed greatly between different GIT regions, with more positive correlations than negative ones. Furthermore, we found that the assembly processes of bacterial communities in the four-chambered stomach and small intestine were mainly stochastic, while those in the large intestine were mainly shaped by deterministic processes, with a higher ecological niche width than other GIT regions. Our results reveal the spatial pattern of bacterial communities in the sheep GIT and the intrinsic mechanisms of bacterial community assembly, laying the foundation for microbial interventions to improve sheep productivity and sustainable farming. IMPORTANCE Sheep's gastrointestinal tract harbors a diverse microbial community crucial for immune system balance, nutrient digestion, and overall health. We explored the microbial community composition, community types (enterotypes), bacterial interactions, and ecological processes in 10 gastrointestinal regions of 36 six-month-old Hu sheep raised under same diets and environmental conditions. Our findings revealed a unique U-shaped pattern of bacterial diversity from the rumen to the rectum, with the lowest diversity in the jejunum. The composition and enterotypes of bacterial communities varied spatially along the gastrointestinal tract, primarily categorized into three distinct groups. The rumen exhibited the highest abundance of bacterial taxa, unique taxa, and unique functions, while the enterotypes in the three regions of the large intestine were consistent. We explored the assembly processes of bacterial communities, elucidating how they find their ecological niches based on their characteristics and environmental demands. The assembly processes in the four-chambered stomach and small intestine resembled random selection, where bacterial positioning depended on luck and chance, while in the large intestine, it appeared more deterministic, with specific bacteria likely selected based on their unique skills and environmental requirements. This study enhances our understanding of microbial coexistence and interactions in complex ecosystems, with implications for improving animal productivity, disease treatment, and the development of novel microbial formulations.
Collapse
Affiliation(s)
- Yukun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jiangbo Cheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Changchun Lin
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Deyin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaobin Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dan Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuan Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Liming Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaolong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Huibin Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiuxiu Weng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weimin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Su T, Fu Y, Tan J, Gagaoua M, Bak KH, Soladoye OP, Zhao Z, Zhao Y, Wu W. Effects of intramuscular fat on the flavor of fresh sheep and goat meat: Recent insights into pre-mortem and post-mortem factors. Food Chem X 2025; 25:102159. [PMID: 39867221 PMCID: PMC11762145 DOI: 10.1016/j.fochx.2025.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Sheep and goat meat products are becoming increasingly popular among consumers due to their unique flavor derived from intramuscular fat (IMF), which contributes to formation of the distinctive odor. However, there is currently a dearth of reviews on the impact of IMF on the flavor of sheep and goat meat. The present review aims to discuss the relationships between IMF and flavor through lipid composition and fatty acid (FA) distribution, provide an overview of characteristic flavor compounds affecting the flavor of sheep and goat meat, and shed light on the impacts of pre-mortem and post-mortem factors on meat flavor attributed to changes in FAs and flavor compounds. Controlling pre-mortem practices and adjusting post-mortem harvesting methods are key factors in shaping and/or driving the flavor of sheep and goat meat products. This review enhances the comprehensive understanding of the impact of IMF on the flavor of sheep and goat meat.
Collapse
Affiliation(s)
- Tianyu Su
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jingjie Tan
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | | | - Kathrine H. Bak
- FFoQSI - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FH OÖ Campus Wels, Stelzhamerstraße 23, A-4600 Wels, Austria
| | - Olugbenga P. Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Wei Wu
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| |
Collapse
|
6
|
Liu T, Luo Z, Zhang T, Chen H, Yi X, Hu J, Shi B, An Y, Cui C, Wang X. Effects of Oregano Essential Oil and/or Yeast Cultures on the Rumen Microbiota of Crossbred Simmental Calves. Animals (Basel) 2024; 14:3710. [PMID: 39765614 PMCID: PMC11672635 DOI: 10.3390/ani14243710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
This study hypothesized that combining oregano essential oil (OEO) and yeast cultures (YCs) would modulate rumen microbiota to promote gastrointestinal homeostasis and function. Twenty-four newborn, healthy, disease-free, crossbred Simmental male calves (birth weight ≥ 35 kg) were assigned to one of four treatments based on birth data. Treatments were as follows: (1) Control (CON), calves fed calf starter without additives; (2) OEO, calves fed calf starter containing 60 mg/kg body weight (BW) of OEO per day; (3) YCs, calves fed calf starter containing 45 mg/kg BW of YC per day; and (4) MIX, calves fed calf starter with OEO (60 mg/kg, BW) and YC (45 mg/kg, BW) combination. The experimental period lasted 70 days. Rumen fluid was collected on the final day, and 16S rRNA sequencing was performed to assess alterations in rumen microbiota. Calves fed MIX exhibited significantly greater microbial richness, species diversity, and lineage diversity (p < 0.05) compared with calves in the other groups. MIX-fed calves also showed changes (p < 0.05) in the relative abundance of certain rumen species, identified as through LEfSe analysis (LDA > 4, p < 0.05). These biomarkers included f_Rikenellaceae, g_Rikenellaceae_RC9_gut_group, g_Erysipelotrichaceae_UCG-002, c_Saccharimonadia, o_Saccharimonadales, f_Saccharimonadaceae, and g_Candidatus_Saccharimonas. Pathways enriched (p < 0.05) in MIX-fed calves involved nucleotide metabolism, lipid metabolism, glycan biosynthesis and metabolism, amino acid metabolism, terpenoids and polyketides metabolism, antimicrobial drug resistance, xenobiotic biodegradation and metabolism, antineoplastic drug resistance, and excretory system pathways. In conclusion, this study demonstrates that the OEO and YC combination enhances rumen microbial community modulation in calves more effectively than OEO or YCs fed individually or with the control diet.
Collapse
Affiliation(s)
- Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
- Linxia Beef Industry Development Research Institute, Linxia 731100, China
| | - Zhihao Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
| | - Tao Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
| | - Huan Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
| | - Xuejiao Yi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
| | - Jiang Hu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
- Linxia Beef Industry Development Research Institute, Linxia 731100, China
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Lanzhou 730070, China
| | - Bingang Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
- Linxia Beef Industry Development Research Institute, Linxia 731100, China
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Lanzhou 730070, China
| | - Yuxi An
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
| | - Changze Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
| | - Xiangyan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
| |
Collapse
|
7
|
Ma L, Zhao W, Ma Q, Wang J, Zhao Z, Zhang J, Gu Y. Genome-Wide Association Study of Birth Wool Length, Birth Weight, and Head Color in Chinese Tan Sheep Through Whole-Genome Re-Sequencing. Animals (Basel) 2024; 14:3495. [PMID: 39682459 DOI: 10.3390/ani14233495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The Chinese Tan sheep is a unique breed of sheep that is typical throughout China, mainly used for fur and meat production. They are widely distributed in northwestern China and are famous for their lambskin and shiny white curly wool. In this study, the phenotypic traits of wool length, birth weight, and head coat color were evaluated in 256 Chinese Tan sheep breeds. Whole genome sequencing generated 23.67 million high-quality SNPs for genome-wide association studies (GWAS). We identified 208 significant SNPs associated with birth wool length, implicating RAD50, MACROD2, SAMD5, SASH1, and SPTLC3 as potential candidate genes for this trait. For birth weight, 1056 significant SNPs, with 76.89% of them located on chromosome 2, were identified by GWAS, and XPA, INVS, LOC121818504, GABBR2, LOC101114941, and LOC106990096 were identified as potential candidate genes for birth weight. The GWAS for head coat color identified 1424 significant SNPs across three chromosomes, with 99.65% on chromosome 14, and SPIRE2, TCF25, and MC1R as candidate genes were found to be possibly involved in the development of the black-headed coat color in sheep. Furthermore, we selected head coat color as a representative trait and performed an independent test of our GWAS findings through multiplex PCR SNP genotyping. The findings validated five mutation sites in chromosome 14 (14,251,947 T>A, 14,252,090 G>A, 14,252,158 C>T, 14,252,329 T>G, and 14,252,464 C>T) within the exon1 of the MC1R gene (517 bp), as identified by GWAS in an additional 102 Tan sheep individuals, and revealed that black-headed sheep predominantly exhibited heterozygous genotypes, possibly contributing to their color change. Our results provide a valuable foundation for further study of these three economically important traits, and enhance our understanding of genetic structure and variation in Chinese Tan sheep.
Collapse
Affiliation(s)
- Lina Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Wei Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Jin Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Zhengwei Zhao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
8
|
Rojas D, Estrada R, Romero Y, Figueroa D, Quilcate C, Ganoza-Roncal JJ, Maicelo JL, Coila P, Alvarado W, Cayo-Colca IS. Sex-Induced Changes in Microbial Eukaryotes and Prokaryotes in Gastrointestinal Tract of Simmental Cattle. BIOLOGY 2024; 13:932. [PMID: 39596887 PMCID: PMC11591695 DOI: 10.3390/biology13110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
This study investigates gender-based differences in the gut microbiota of Simmental cattle, focusing on bacterial, archaeal, and fungal communities. Fecal samples were collected and analyzed using high-throughput sequencing, with taxonomic classification performed through the SILVA and UNITE databases. Alpha and beta diversity metrics were assessed, revealing significant differences in the diversity and composition of archaeal communities between males and females. Notably, females exhibited higher alpha diversity in archaea, while beta diversity analyses indicated distinct clustering of bacterial and archaeal communities by gender. The study also identified correlations between specific microbial taxa and hematological parameters, with Treponema and Methanosphaera showing gender-specific associations that may influence cattle health and productivity. These findings highlight the importance of considering gender in microbiota-related research and suggest that gender-specific management strategies could optimize livestock performance. Future research should explore the role of sex hormones in shaping these microbial differences.
Collapse
Affiliation(s)
- Diórman Rojas
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Yolanda Romero
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Deyanira Figueroa
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Carlos Quilcate
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Jorge J. Ganoza-Roncal
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Jorge L. Maicelo
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (J.L.M.); (W.A.); (I.S.C.-C.)
| | - Pedro Coila
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, Puno 21001, Peru;
| | - Wigoberto Alvarado
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (J.L.M.); (W.A.); (I.S.C.-C.)
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (J.L.M.); (W.A.); (I.S.C.-C.)
| |
Collapse
|
9
|
Wang Y, Liu W, Li A, Qubi W, Gong C, Li X, Xing J, Shi H, Li Y, Wang Y, Lin Y. Changes in the growth performance, serum biochemistry, rumen fermentation, rumen microbiota community, and intestinal development in weaned goats during rumen-protected methionine treatment. Front Vet Sci 2024; 11:1482235. [PMID: 39582883 PMCID: PMC11582046 DOI: 10.3389/fvets.2024.1482235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Rumen-protected methionine (RPM) such as coated methionine (CM) and 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester (HMBi) was usually used in dairy cows, but how RPM affects meat goats remains unclear. In this study, thirty weaned male Jianzhou Da'er goats were randomly assigned to one of three treatments: fed basal diet or basal diet supplemented with 0.12% CM or 0.22% HMBi, with the aim of examining their impact on growth performance, serum biochemistry, rumen fermentation, rumen microbiota, and intestinal development in meat goats. The findings indicate that HMBi supplementation led to an increase in body weight, feed intake, and feed-to-gain ratio, whereas CM only resulted in an increase in feed intake (all p < 0.05). Both CM and HMBi resulted in an increase in serum total cholesterol (TC), blood urea nitrogen (BUN), alkaline phosphatase (ALP), and aspartate aminotransferase (AST), albeit with a decrease in serum triglycerides (TG) and β-hydroxybutyric acid (BHB, all p < 0.05). Both CM and HMBi supplementation decreased the rumen butyric acid concentration (both p < 0.05). The 16S rRNA sequencing showed that HMBi supplementation significantly increased the total abundance of Bacteroidetes and Firmicutes. Both CM and HMBi supplements increased the abundance of Rikenella and Proteiniphilum but decreased the abundance of Eisenbergiella, Enterocloster, Massilioclostridium, Eubacterium, Angelakisella, Blastopirellula, Christensenella, and Pseudoruminococcus. CM supplementation specifically increased the abundance of Desulfobulbus, Sodaliphilus, and Coprococcus while decreasing the prevalence of Anaerocella, Mogibacterium, and Collinsella. The supplementation of HMBi significantly enhanced the abundance of Paraprevotella, Bacilliculturomica, Lachnoclostridium, Dysosmobacter, Barnesiella, and Paludibacter, while decreasing the abundance of Butyrivibrio and Pirellula. Moreover, the administration of both CM and HMBi supplementation resulted in an increase in the ammonia-producing and sulfate-reducing bacteria, whereas a decrease was observed in the ammonia-oxidating, health-associated, and disease-associated bacteria. Correlational analysis revealed that TG and BHB had a positive correlation with disease-associated and ammonia-oxidating bacteria, whereas they had a negative correlation with ammonia-producing bacteria. The serum BUN, ALP, and AST were positively correlated with ammonia-producing bacteria but were negatively correlated with ammonia-oxidating bacteria. Furthermore, both CM and HMBi supplementation improve the development of the small intestine, with HMBi having a better effect. In summary, this study indicates that both CM and HMBi supplementation improve lipid metabolism, nitrogen utilization, and intestinal development. The growth promotion effect of HMBi supplementation may be attributed to the increased abundance of volatile fatty acid-producing and nitrogen-utilizing bacteria and improved intestinal development.
Collapse
Affiliation(s)
- Youli Wang
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Wei Liu
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - An Li
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Wuqie Qubi
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Chengsi Gong
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Xuening Li
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Jiani Xing
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Haitao Shi
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| |
Collapse
|
10
|
Zhang R, Zhang L, An X, Li J, Niu C, Zhang J, Geng Z, Xu T, Yang B, Xu Z, Yue Y. Hybridization promotes growth performance by altering rumen microbiota and metabolites in sheep. Front Vet Sci 2024; 11:1455029. [PMID: 39386242 PMCID: PMC11461465 DOI: 10.3389/fvets.2024.1455029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
Hybridization can substantially improve growth performance. This study used metagenomics and metabolome sequencing to examine whether the rumen microbiota and its metabolites contributed to this phenomenon. We selected 48 approximately 3 month-old male ♂Hu × ♀Hu (HH, n = 16), ♂Poll Dorset × ♀Hu (DH, n = 16), and ♂Southdown × ♀Hu (SH, n = 16) lambs having similar body weight. The sheep were fed individually under the same nutritional and management conditions for 95 days. After completion of the trial, seven sheep close to the average weight per group were slaughtered to collect rumen tissue and content samples to measure rumen epithelial parameters, fermentation patterns, microbiota, and metabolite profiles. The final body weight (FBW), average daily gain (ADG), and dry matter intake (DMI) values in the DH and SH groups were significantly higher and the feed-to-gain ratio (F/G) significantly lower than the value in the HH group; additionally, the papilla height in the DH group was higher than that in the HH group. Acetate, propionate, and total volatile fatty acid (VFA) concentrations in the DH group were higher than those in the HH group, whereas NH3-N concentration decreased in the DH and SH groups. Metagenomic analysis revealed that several Prevotella and Fibrobacter species were significantly more abundant in the DH group, contributing to an increased ability to degrade dietary cellulose and enrich their functions in enzymes involved in carbohydrate breakdown. Bacteroidaceae bacterium was higher in the SH group, indicating a greater ability to digest dietary fiber. Metabolomic analysis revealed that the concentrations of rumen metabolites (mainly lysophosphatidylethanolamines [LPEs]) were higher in the DH group, and microbiome-related metabolite analysis indicated that Treponema bryantii and Fibrobacter succinogenes were positively correlated with the LPEs. Moreover, we found methionine sulfoxide and N-methyl-4-aminobutyric acid were characteristic metabolites in the DH and SH groups, respectively, and are related to oxidative stress, indicating that the environmental adaptability of crossbred sheep needs to be further improved. These findings substantially deepen the general understanding of how hybridization promotes growth performance from the perspective of rumen microbiota, this is vital for the cultivation of new species and the formulation of precision nutrition strategies for sheep.
Collapse
Affiliation(s)
- Rui Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Liwa Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xuejiao An
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Jianye Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Chune Niu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Jinxia Zhang
- Qingyang Research Institute of Agricultural Sciences, Qingyang, China
| | - Zhiguang Geng
- Qingyang Research Institute of Agricultural Sciences, Qingyang, China
| | - Tao Xu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Agricultural and Rural Comprehensive Service Center of Gengwan Township, Qingyang, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Zhenfei Xu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| |
Collapse
|
11
|
Wang H, Zhan J, Zhao S, Jiang H, Jia H, Pan Y, Zhong X, Huo J. Microbial-Metabolomic Exploration of Tea Polyphenols in the Regulation of Serum Indicators, Liver Metabolism, Rumen Microorganisms, and Metabolism in Hu Sheep. Animals (Basel) 2024; 14:2661. [PMID: 39335251 PMCID: PMC11429419 DOI: 10.3390/ani14182661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the impact of tea polyphenols on serum indices, rumen microorganisms, rumen metabolism, and liver metabolism in Hu sheep. Sixty healthy lambs, aged three months and with similar average weights, were chosen and randomly assigned to control (CON), TP400, TP800, and TP1200 groups, each consisting of fifteen lambs. The control group received a basal diet, while the experimental groups were provided with basal diet supplemented with 400 mg/kg, 800 mg/kg, and 1200 mg/kg of tea polyphenols, respectively. Compared with the CON group, the addition of tea polyphenols to the diet significantly increased serum IgA, GSH-Px, and TSOD. In addition, tea polyphenols were able to increase rumen pH but had no significant effect on the rumen NH3-N, VFA molar content, and the microbial top 10 phylum and genus levels. Moreover, Firmicutes predominated in the network map of the top 80 abundant microorganisms at the genus level, identifying 13 biomarkers at the genus level. In addition, strong correlations were observed between liver and rumen metabolites, particularly between rumen succinic acid and liver alanyl-serine and methylmalonic acid. Furthermore, tea polyphenol additions changed the enrichment of liver and rumen metabolites in the top five KEGG metabolic pathways, but 400-1200 mg/kg additions had no negative impact on the liver and rumen. In summary, TP significantly influences rumen and liver metabolites in Hu sheep, enhancing lamb immunity and antioxidant capacity, with 400 mg/kg being the most effective dosage.
Collapse
Affiliation(s)
- Haibo Wang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinshun Zhan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Haoyun Jiang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Haobin Jia
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Yue Pan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaojun Zhong
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Junhong Huo
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| |
Collapse
|
12
|
Yao R, Li F, Dong X, Xu Y, Hu R, Wang L, Cai K, Liu X, Ni W, Zhou P, Hu S. Microbial Community Structure and Metabolism of Xinjiang Fine-Wool Sheep based on High-Throughput Sequencing Technology. Curr Microbiol 2024; 81:324. [PMID: 39180522 DOI: 10.1007/s00284-024-03837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
It turns out that the more than trillion microorganisms living in the host's digestive tract are crucial for maintaining nutrient intake, environmental suitability, and physiological mechanism. Xinjiang fine-wool sheep is an exclusive breed for wool in China, which has excellent stress tolerance. In this study, we collected feces and blood samples of 20 Xinjiang fine-wool sheep under the same genetic characteristics, the Fine-Wool Sheep (FWS) group and the Control Fine-Wool Sheep (CFWS) group were set up according to the differs in phenotypic characteristics of their wool. By 16S rRNA amplicon sequence, ITS1 region amplicons and Targeted Metabolomics, we analyzed the microbial community structure of fecal microorganisms and Short Chain Fatty Acids (SCFAs) in serum of the Xinjiang fine-wool sheep. Fecal microbial sequencing showed that the bacterial composition and structure were similar between the two groups, whereas there were significant differences in the composition and structure of the fungal community. It was also found that the abundant of Neocallimastigomycota in the intestinal fungal community of FWS was higher. In addition, the results of the serum SCFAs content analysis showed that butyric acid was significantly differences than those two groups. Correlation analysis between SCFAs and bacteria found that butyric acid metabolism had positively correlated (P < 0.05) with Ruminococcus and UCG-005. Overall, our data provide more supplement about the gut microbes community composition and structure of the Xinjiang fine-wool sheep. These results might be useful for improving gut health of sheep and taking nutritional control measure to improve production traits of animals in future.
Collapse
Affiliation(s)
- Rui Yao
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
| | - Fulin Li
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xuyang Dong
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yueren Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China
| | - Kuojun Cai
- College of Veterinary Medicine, Xinjiang Agriculture University, Urumqi, 830052, Xinjiang, China
| | - Xiaogang Liu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China.
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China.
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
13
|
Wang H, Zhan J, Jiang H, Jia H, Pan Y, Zhong X, Huo J, Zhao S. Metagenomics-Metabolomics Exploration of Three-Way-Crossbreeding Effects on Rumen to Provide Basis for Crossbreeding Improvement of Sheep Microbiome and Metabolome of Sheep. Animals (Basel) 2024; 14:2256. [PMID: 39123781 PMCID: PMC11311065 DOI: 10.3390/ani14152256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The objective of this experiment was to explore the effects of three-way hybridization on rumen microbes and metabolites in sheep using rumen metagenomics and metabolomics. Healthy Hu and CAH (Charolais × Australian White × Hu) male lambs of similar birth weight and age were selected for short-term fattening after intensive weaning to collect rumen fluid for sequencing. Rumen metagenomics diversity showed that Hu and CAH sheep were significantly segregated at the species, KEGG-enzyme, and CAZy-family levels. Moreover, the CAH significantly increased the ACE and Chao1 indices. Further, correlation analysis of the abundance of the top 80 revealed that the microorganisms were interrelated at the species, KEGG-enzyme, and CAZy-family levels. Overall, the microbiome significantly affected metabolites of the top five pathways, with the strongest correlation found with succinic acid. Meanwhile, species-level microbial markers significantly affected rumen differential metabolites. In addition, rumen microbial markers in Hu sheep were overall positively correlated with down-regulated metabolites and negatively correlated with up-regulated metabolites. In contrast, rumen microbial markers in CAH lambs were overall negatively correlated with down-regulated metabolites and positively correlated with up-regulated metabolites. These results suggest that three-way crossbreeding significantly affects rumen microbial community and metabolite composition, and that significant interactions exist between rumen microbes and metabolites.
Collapse
Affiliation(s)
- Haibo Wang
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinshun Zhan
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Haoyun Jiang
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Haobin Jia
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Yue Pan
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaojun Zhong
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Junhong Huo
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
14
|
Yang T, Chen S, Qiu L, Guo Q, Wang Z, Jiang Y, Bai H, Bi Y, Chang G. Effect of High Dietary Iron on Fat Deposition and Gut Microbiota in Chickens. Animals (Basel) 2024; 14:2254. [PMID: 39123780 PMCID: PMC11310990 DOI: 10.3390/ani14152254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
To meet the demand of consumers for chicken products, poultry breeders have made improvements to chickens. However, this has led to a new problem in the modern poultry industry, namely excessive fat deposition. This study aims to understand the effects of dietary iron supplementation on fat deposition and gut microbiota in chickens. In this study, we investigated the effects of iron on the growth performance, fat deposition, and gut microbiota of silky fowl black-bone chickens. A total of 75 7-week-old silky fowl black-bone chickens were randomly divided into three groups (five replicates per group, five chickens per replicate) and fed them for 28 days using a growing diet (control group), a growing diet + 10% tallow (high-fat diet group, HFD group), and a growing diet + 10% tallow + 500 mg/kg iron (HFDFe500 group), respectively. We detected the effects of iron on the growth performance, fat deposition, and gut microbiota of silky fowl black-bone chickens using the growth performance index test, oil red O staining, and HE staining, and found that the high-fat diet significantly increased liver and serum fat deposition and liver injury, while the addition of iron to the diet could reduce the fat deposition caused by the high-fat diet and alleviate liver injury. In addition, 16S rDNA sequencing was used to compare the relative abundance of gut microbiota in the cecal contents in different feeding groups. The results showed that the high-fat diet could induce gut microbiota imbalance in chickens, while the high-iron diet reversed the gut microbiota imbalance. PICRUSt functional prediction analysis showed that dietary iron supplementation affected amino acid metabolism, energy metabolism, cofactors, and vitamin metabolism pathways. In addition, correlation analysis showed that TG was significantly associated with Firmicutes and Actinobacteriota (p < 0.05). Overall, these results revealed high dietary iron (500 mg/kg) could reduce fat deposition and affect the gut microbiota of silky fowl black-bone chickens, suggesting that iron may regulate fat deposition by influencing the gut microbiota of chickens and provides a potential avenue that prevents excessive fat deposition in chickens by adding iron to the diet.
Collapse
Affiliation(s)
- Ting Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Lingling Qiu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qixin Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Xiao C, Liu Y, Zhao W, Liang Y, Cui C, Yang S, Fang W, Miao L, Yuan Z, Lin Z, Zhai B, Zhao Z, Zhang L, Ma H, Jin H, Cao Y. The comparison of meat yield, quality, and flavor between small-tailed Han sheep and two crossbred sheep and the verification of related candidate genes. Front Nutr 2024; 11:1399390. [PMID: 39149545 PMCID: PMC11324605 DOI: 10.3389/fnut.2024.1399390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction In Northeast China, Dorper and Australian White rams are commonly crossbred with small-tailed Han (STH) ewes to improve the offspring's meat yield and quality. However, the differences in traits and the flavor between the crossbred sheep and STH sheep remain unclear. In addition, the candidate genes potentially influencing the meat quality in the three sheep breeds require further verification. Methods A total of 18 2-month-old healthy rams were raised over a period of 5 months, which included 6 STH, 6 Dorper and small-tailed Han crossbred (Do × STH), and 6 Australian white and small-tailed Han crossbred (Au × STH) offspring. The differences in slaughter, meat quality traits, fatty acid and amino acid composition in the muscular longissimus dorsi (MLD), and volatile compounds in the semitendinosus muscle were compared between the sheep breeds. The candidate genes related to intramuscular fat (IMF) content and fatty acids were validated. Results The results of this study revealed that the crossbred sheep had higher body weight, carcass weight, bone weight, net meat weight, and IMF content than the STH sheep (p < 0.05). The Do × STH offspring had a higher pH value (24 h), moisture content, and cooking percentage; they also had redder and brighter meat color. The content of myristate, palmitic, and margaric acids in the crossbred sheep was higher than that in the STH sheep (p < 0.05). The Do × STH offspring had the highest saturated fatty acid content (p < 0.05). The Au × STH offspring had the highest protein content (p < 0.05). The arachidonic acid and amino acid (Asp, Ala, Ile, Leu, Lys, Thr, and essential amino acid) contents were higher in the STH sheep than in the crossbred sheep (p < 0.05). The odor activity value (OAV) analysis showed that most of the aldehydes in the Au × STH offspring had higher values. The PDK4 gene expression was positively associated with the IMF content and was negatively correlated with the linoleic acid content in the Do × STH sheep (p < 0.05). The TMEM273 gene expression was positively associated with linoleic and arachidonic acid contents and was negatively correlated with oleic and palmitic acid contents in the Do × STH sheep (p < 0.05). Discussion The results showed the differences between the crossbred sheep and STH sheep and provided the candidate genes related to meat quality in sheep.
Collapse
Affiliation(s)
- Cheng Xiao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
- Research Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Dummerstorf, Germany
- Institute of Agricultural and Environmental Sciences, Rostock University, Rostock, Germany
| | - Yu Liu
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Wenjun Zhao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
- College of Agriculture, YanBian University, Yanji, China
| | - Yingjia Liang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Chao Cui
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Shaoying Yang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - WenWen Fang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Lisheng Miao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhiyu Yuan
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zihan Lin
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Bo Zhai
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhongli Zhao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Lichun Zhang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Huihai Ma
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Haiguo Jin
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yang Cao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| |
Collapse
|
16
|
Bai H, Zhang H, Wang C, Lambo MT, Li Y, Zhang Y. Effects of altering the ratio of C16:0 and cis-9 C18:1 in rumen bypass fat on growth performance, lipid metabolism, intestinal barrier, cecal microbiota, and inflammation in fattening bulls. J Anim Sci Biotechnol 2024; 15:94. [PMID: 38971799 PMCID: PMC11227724 DOI: 10.1186/s40104-024-01052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND C16:0 and cis-9 C18:1 may have different effects on animal growth and health due to unique metabolism in vivo. This study was investigated to explore the different effects of altering the ratio of C16:0 and cis-9 C18:1 in fat supplements on growth performance, lipid metabolism, intestinal barrier, cecal microbiota, and inflammation in fattening bulls. Thirty finishing Angus bulls (626 ± 69 kg, 21 ± 0.5 months) were divided into 3 treatments according to the randomized block design: (1) control diet without additional fat (CON), (2) CON + 2.5% palmitic acid calcium salt (PA, 90% C16:0), and (3) CON + 2.5% mixed fatty acid calcium salt (MA, 60% C16:0 + 30% cis-9 C18:1). The experiment lasted for 104 d, after which all the bulls were slaughtered and sampled for analysis. RESULTS MA tended to reduce 0-52 d dry matter intake compared to PA (DMI, P = 0.052). Compared with CON and MA, PA significantly increased 0-52 d average daily gain (ADG, P = 0.027). PA tended to improve the 0-52 d feed conversion rate compared with CON (FCR, P = 0.088). Both PA and MA had no significant effect on 52-104 days of DMI, ADG and FCR (P > 0.05). PA tended to improve plasma triglycerides compared with MA (P = 0.077), significantly increased plasma cholesterol (P = 0.002) and tended to improve subcutaneous adipose weight (P = 0.066) when compared with CON and MA. Both PA and MA increased visceral adipose weight compared with CON (P = 0.021). Only PA increased the colonization of Rikenellaceae, Ruminococcus and Proteobacteria in the cecum, and MA increased Akkermansia abundance (P < 0.05). Compared with CON, both PA and MA down-regulated the mRNA expression of Claudin-1 in the jejunum (P < 0.001), increased plasma diamine oxidase (DAO, P < 0.001) and lipopolysaccharide (LPS, P = 0.045). Compared with CON and MA, PA down-regulated the ZO-1 in the jejunum (P < 0.001) and increased plasma LPS-binding protein (LBP, P < 0.001). Compared with CON, only PA down-regulated the Occludin in the jejunum (P = 0.013). Compared with CON, PA and MA significantly up-regulated the expression of TLR-4 and NF-κB in the visceral adipose (P < 0.001) and increased plasma IL-6 (P < 0.001). Compared with CON, only PA up-regulated the TNF-α in the visceral adipose (P = 0.01). Compared with CON and MA, PA up-regulated IL-6 in the visceral adipose (P < 0.001), increased plasma TNF-α (P < 0.001), and reduced the IgG content in plasma (P = 0.035). Compared with CON, PA and MA increased C16:0 in subcutaneous fat and longissimus dorsi muscle (P < 0.05), while more C16:0 was also deposited by extension and desaturation into C18:0 and cis-9 C18:1. However, neither PA nor MA affected the content of cis-9 C18:1 in longissimus dorsi muscle compared with CON (P > 0.05). CONCLUSIONS MA containing 30% cis-9 C18:1 reduced the risk of high C16:0 dietary fat induced subcutaneous fat obesity, adipose tissue and systemic low-grade inflammation by accelerating fatty acid oxidative utilization, improving colonization of Akkermansia, reducing intestinal barrier damage, and down-regulating NF-κB activation.
Collapse
Affiliation(s)
- Haixin Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Haosheng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Congwen Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650500, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
17
|
Estrada R, Romero Y, Figueroa D, Coila P, Hañari-Quispe RD, Aliaga M, Galindo W, Alvarado W, Casanova D, Quilcate C. Effects of Age in Fecal Microbiota and Correlations with Blood Parameters in Genetic Nucleus of Cattle. Microorganisms 2024; 12:1331. [PMID: 39065099 PMCID: PMC11279168 DOI: 10.3390/microorganisms12071331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to determine the impact of age on the fecal microbiota in the genetic nucleus of cattle, with a focus on microbial richness, composition, functional diversity, and correlations with blood parameters. Fecal and blood samples from 21 cattle were analyzed using 16S rRNA gene sequencing. Older cattle exhibited greater bacterial diversity and abundance, with significant changes in alpha diversity indices (p < 0.05). Beta diversity analysis revealed significant variations in microbial composition between age groups and the interaction of age and sex (p < 0.05). Correlations between alpha diversity, community composition, and hematological values highlighted the influence of microbiota on bovine health. Beneficial butyrate-producing bacteria, such as Ruminococcaceae, were more abundant in older cattle, suggesting a role in gut health. Functional diversity analysis indicated that younger cattle had significantly more abundant metabolic pathways in fermentation and anaerobic chemoheterotrophy. These findings suggest management strategies including tailored probiotic therapies, dietary adjustments, and targeted health monitoring to enhance livestock health and performance. Further research should include comprehensive metabolic analyses to better correlate microbiota changes with age-related variations, enhancing understanding of the complex interactions between microbiota, age, and reproductive status.
Collapse
Affiliation(s)
- Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (Y.R.); (D.F.); (D.C.)
| | - Yolanda Romero
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (Y.R.); (D.F.); (D.C.)
| | - Deyanira Figueroa
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (Y.R.); (D.F.); (D.C.)
| | - Pedro Coila
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano, Puno 21001, Peru; (P.C.); (R.D.H.-Q.); (M.A.); (W.G.)
| | - Renán Dilton Hañari-Quispe
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano, Puno 21001, Peru; (P.C.); (R.D.H.-Q.); (M.A.); (W.G.)
| | - Mery Aliaga
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano, Puno 21001, Peru; (P.C.); (R.D.H.-Q.); (M.A.); (W.G.)
| | - Walter Galindo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano, Puno 21001, Peru; (P.C.); (R.D.H.-Q.); (M.A.); (W.G.)
| | - Wigoberto Alvarado
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas 01001, Peru;
| | - David Casanova
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (Y.R.); (D.F.); (D.C.)
| | - Carlos Quilcate
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (Y.R.); (D.F.); (D.C.)
| |
Collapse
|
18
|
Duan P, Rehemujiang H, Zhang L, Lu M, Li C, Hu L, Wang Y, Diao Q, Xu G. Lycium barbarum (Wolfberry) Branches and Leaves Enhance the Growth Performance and Improve the Rumen Microbiota in Hu Sheep. Animals (Basel) 2024; 14:1610. [PMID: 38891656 PMCID: PMC11171408 DOI: 10.3390/ani14111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The Lycium barbarum branches and leaves (LBL) are known to contain a range of active substances that have positive effects on animal immunity and antioxidation. This study aimed to examine how LBL impacts the growth and slaughter performance as well as rumen fermentation and microbiota in Hu sheep. A total of 50 male Hu sheep of indigenous origin, aged 3 months, were randomly divided into 5 groups of 10 sheep each. The groups were given different levels of LBL supplementation (0%, 3%, 6%, 9%, and 12%) to evaluate growth performance and nutrient apparent digestibility. Rumen fluid samples were collected for analysis of the fermentation parameters and rumen chyme was examined to study the rumen microbiota. The slaughter performance, meat quality, and organ index were evaluated at the conclusion of the experiment. The results showed that the final body weight and average daily gain of the LBL1 group were significantly higher than those of the CON group, LBL3 group, and LBL4 group (p < 0.05). The average dry matter intake of the LBL4 group was significantly lower than that of other experimental groups (p < 0.05). The apparent digestibility of CP in the LBL1 and LBL2 groups was higher than that in other experimental groups (p < 0.05). At the same time, the eye muscle area and grade-rule (GR) value of Hu sheep in the LBL1 group significantly increased and the quality of Hu sheep meat improved (p < 0.05). There was no significant difference in organ weight and organ index between the experimental groups (p > 0.05). The pH of the rumen fluid in the LBL1 group was significantly lower than that in the CON group (p < 0.05). There was no significant difference in the NH3-N content between the experimental groups (p > 0.05). The propionate and valerate in the rumen fluid of Hu sheep in the LBL2 group were significantly higher than those in other experimental groups (p < 0.05). In addition, this had no significant effect on the structure and abundance of the rumen microbiota (p > 0.05). LBL is a promising functional feed. Adding an appropriate amount of LBL to the diet can improve the feed efficiency, growth performance, and meat quality of Hu sheep but has no adverse effects on the rumen. In this experiment, the appropriate supplemental level of LBL in the diet was 3%.
Collapse
Affiliation(s)
- Pingping Duan
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Halidai Rehemujiang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Lidong Zhang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Mulong Lu
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Changchang Li
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Lihong Hu
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Youli Wang
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China;
| | - Qiyu Diao
- Institute of Feed Research, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100080, China;
| | - Guishan Xu
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Tarim University, Alar 843300, China
| |
Collapse
|
19
|
Wang H, Zhan J, Jia H, Jiang H, Pan Y, Zhong X, Zhao S, Huo J. Relationship between Rumen Microbial Differences and Phenotype Traits among Hu Sheep and Crossbred Offspring Sheep. Animals (Basel) 2024; 14:1509. [PMID: 38791726 PMCID: PMC11117386 DOI: 10.3390/ani14101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
This experiment was conducted to investigate the effect of three-way hybrid sheep and Hu sheep on serum indicators, rumen fermentation, rumen enzyme activity, and microorganisms in sheep. Healthy and similar birth weights from three groups (Hu, n = 11; Charolais × Australian White × Hu, CAH, n = 11; Charolais × Dorper × Hu, CDH, n = 11) were selected to be fed by the ewes until 45 days of age. Subsequently, they were weaned intensively and underwent short-term fattening for 3 months along with selected male lambs fed intensively. During this period, they were fed and watered ad libitum. Blood and rumen fluid were collected and analyzed for serum indicators and rumen fluid microorganisms, enzyme activity, and VFA, respectively, at the end of the fattening period. Compared with Hu lamb, the offspring of the three-way hybrid lamb showed significant improvements in body weight, serum lactate dehydrogenase, and creatinine content. However, there was no significant effect on serum immunity and antioxidant indices. In addition, the rumen fluid volatile fatty acid (VFA) molar concentration and microcrystalline cellulose and lipase content were significantly lower in the three-way hybrid lamb compared to Hu lamb, but β-glucosidase, amylase, pepsin, and VFA molar ratio were not significantly affected. Subsequently, 16S rRNA sequencing diversity analysis revealed that three-way hybrid lamb significantly increased rumen microbial ACE and Chao1 indices compared to Hu lamb. Meanwhile, the abundance of Verrucomicrobiota and Synergistota significantly increased at the phylum level. Correlation analysis showed that Prevotella had the highest proportion, while Rikenellaceae_RC9_gut_group correlated most closely with others genus. The microbial communities isovaleric acid molar concentration and proportion were strongly correlated. In addition, there were significant differences in correlations between microbial communities and isobutyric acid, butyric acid and valeric acid content, and their molar proportion, but they were not significantly correlated with digestive enzymes. From the functional enrichment analysis, it was found that hybrid progeny were mainly enriched in the pyruvate metabolism, microbial metabolism in diverse environments, carbon metabolism, and quorum sensing pathways. In contrast, the Hu sheep were primarily enriched in the cysteine and methionine, amino sugar and nucleotide sugar, and biosynthesis of secondary metabolite pathways. These results suggest that hybridization can play a role in regulating organismal metabolism and improve animal production performance by influencing the structure and characteristics of microbial communities.
Collapse
Affiliation(s)
- Haibo Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Jinshun Zhan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Haobin Jia
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Haoyun Jiang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Yue Pan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaojun Zhong
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Junhong Huo
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| |
Collapse
|
20
|
Li D, Liu Z, Duan X, Wang C, Chen Z, Zhang M, Li X, Ma Y. Rumen Development of Tianhua Mutton Sheep Was Better than That of Gansu Alpine Fine Wool Sheep under Grazing Conditions. Animals (Basel) 2024; 14:1259. [PMID: 38731263 PMCID: PMC11083190 DOI: 10.3390/ani14091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
The purpose of this experiment was to investigate the differences in rumen tissue morphology, volatile fatty acid content, and rumen microflora between Tianhua mutton sheep and Gansu alpine fine wool sheep under the same grazing conditions. Twelve 30-day-old lambs were randomly selected from two different flocks in Duolong Village and grazed together for a period of 150 days. The rumen tissue was fixed with 4% paraformaldehyde and brought back to the laboratory for H&E staining, the volatile fatty acid content of the rumen contents was detected by gas chromatography, and the rumen flora structure was sequenced by full-length sequencing of the bacterial 16S rRNA gene using the PacBio sequencing platform. The acetic acid and total acid contents of the rumen contents of Tianhua mutton sheep were significantly higher than those of Gansu alpine fine wool sheep (p < 0.05). The rumen papillae height of Tianhua mutton sheep was significantly higher than that of Gansu alpine fine wool sheep (p < 0.05). The diversity and richness of the rumen flora of Tianhua mutton sheep were higher than those of Gansu alpine fine wool sheep, and Beta analysis showed that the microflora structure of the two fine wool sheep was significantly different. At the phylum level, Firmicutes and Bacteroidetes dominated the rumen flora of Tianhua mutton sheep and Gansu alpine fine wool sheep. At the genus level, the dominant strains were Christensenellaceae_R_7_group and Rikenellaceae_RC9_gut_group. LEfSe analysis showed that Prevotella was a highly abundant differential species in Tianhua mutton sheep and lachnospiraccac was a highly abundant differential species in Gansu alpine fine wool sheep. Finally, both the KEGG and COG databases showed that the enrichment of biometabolic pathways, such as replication and repair and translation, were significantly higher in Tianhua mutton sheep than in Gansu alpine fine wool sheep (p < 0.05). In general, there were some similarities between Tianhua mutton sheep and Gansu alpine fine wool sheep in the rumen tissue morphology, rumen fermentation ability, and rumen flora structure. However, Tianhua mutton sheep had a better performance in the rumen acetic acid content, rumen papillae height, and beneficial bacteria content. These differences may be one of the reasons why Tianhua mutton sheep are more suitable for growing in alpine pastoral areas than Gansu alpine fine wool sheep.
Collapse
Affiliation(s)
- Dengpan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zhanjing Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Tianzhu County Animal Disease Prevention and Control Center, Wuwei 733200, China
| | - Xinming Duan
- NongfaYuan Zhejiang Agricultural Development Co., Ltd., Huzhou 313000, China;
| | - Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zengping Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Muyang Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xujie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
21
|
Liu T, Bu Z, Xiang K, Jia Y, Du S. Effects of non-pelleted or pelleted low-native grass and pelleted high-native grass diets on meat quality by regulating the rumen microbiota in lambs. Microbiol Spectr 2024; 12:e0375823. [PMID: 38363135 PMCID: PMC10986533 DOI: 10.1128/spectrum.03758-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Diet modulates the rumen microbiota, which in turn can impact the animal performance. The rumen microbiota is increasingly recognized for its crucial role in regulating the growth and meat quality of the host. Nevertheless, the mechanism by which the rumen microbiome influences the fatty acid and amino acid profiles of lambs in the grass feeding system remains unclear. This study aimed to evaluate the effects of different native grass-based diets on animal performance, meat quality, fatty acid compositions, amino acid profiles, and rumen microbiota of lamb. Seventy-two Ujumqin lambs were randomly assigned into three treatments according to the initial body weight (27.39 ± 0.51 kg) and age (6 months ± 6 days). The lambs received three diets: (i) non-pelleted native grass hay with 40% concentrate diet; the native grass and concentrate were fed individually; (ii) pelleted native grass hay with 40% concentrate diet (PHLC); (iii) pelleted native grass hay with 60% concentrate diet (PHHC). The results showed that among the three groups, the PHHC and PHLC diets had markedly (P < 0.05) higher average daily gain and pH45 min, respectively. All amino acid levels were significantly (P < 0.05) decreased in the PHHC diet than in the PHLC diet. The principal coordinate analysis of the ruminal microbiota indicated the markedly distinct separation (P = 0.001) among the three groups. In addition, the correlation analysis showed that the Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG-003, Succinivibrio, and Succiniclasticum were significantly (P < 0.05) associated with most of the fatty acid and amino acid profiles. The correlation analysis of the association of microbiome with the meat quality provides us with a comprehensive understanding of the composition and function of the rumen microbial community, and these findings will contribute to the direction of future research in lamb. IMPORTANCE Diet modulates the gut microbiome, which in turn impact the meat quality, yet few studies investigate the correlation between the rumen microbiome and the fatty acid profile of meat. Here, the current study develops an experiment to investigate the correlation of the rumen microbiome and fatty acid profile of meat: rumen microbiome responses to feed type and meat quality. The results indicated a unique microbiota in the rumen of lamb in response to diets and meat quality. Associations between utilization and production were widely identified among the affected microbiome and meat quality, and these findings will contribute to the direction of future research in lamb.
Collapse
Affiliation(s)
- Tingyu Liu
- College of Agriculture, Inner Mongolia University of Nationalities, Tongliao, China
| | - Zhenkun Bu
- Guangdong Laboratory of Lingnan Modern Agriculture, Agriculture Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agriculture Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kaifeng Xiang
- Forest and Grassland Protection and Development Center, Chifeng, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Shuai Du
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
22
|
Gao Z, Raza SHA, Ma B, Zhang F, Wang Z, Hou S, Almohaimeed HM, Alhelaify SS, Alzahrani SS, Alharthy OM, Gui L. Effects of dietary wheat supplementation levels on growth performance, rumen bacterial community and fermentation parameters in Chinese Tibetan Sheep. J Anim Physiol Anim Nutr (Berl) 2024; 108:470-479. [PMID: 38014916 DOI: 10.1111/jpn.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/31/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
The objective of this study was to evaluate various wheat supplementation levels on rumen microbiota and fermentation parameter in Tibetan sheep. A total of ninety ram with an average 12.37 ± 0.92 kg at the age of 2 months were randomly allocated to three treatments: 0% wheat diet (CW, N = 30), 10% wheat diet (LW, N = 30), and 15% wheat diet (HW, N = 30) on a dry matter basis. The experiment was conducted over a period of 127 days, including 7 days of adaption to the diets. Our results showed that sheep fed 10% wheat exhibited optimal average daily gain and feed gain ratio compared with HW group (p < 0.05). The serum alkaline phosphatase concentration was the lowest when fed the 10% wheat diet (p < 0.05), whereas serum aspartate aminotransferase concentration was the highest (p < 0.05). Both acetate and propionate increased with increase in dietary wheat ratio (p < 0.05), while a greater decrease in concentrations of NH3 -N was observed (p < 0.05). In rumen fluid, 3413 OTUs were obtained with 97% consistency. Phylum Firmicutes was the predominant bacteria and accounted for 49.04%. The CW groups supported significantly increased the abundance of Bacteroidetes (p < 0.05), as compared with the HW group. The abundance of Bacteroidales_UCG-001, Ruminococcus, and Mitsuokella possessed a higher relative abundance in HW group (p < 0.05). No differences in the bacterial community and fermentation parameters were observed between the sheep fed 0% and 10% wheat (p > 0.05). Ruminal bacterial community structure was significantly correlated with isobutyrite (r2 = 0.4878, p = 0.035) and valerate (r2 = 0.4878, p = 0.013). In conclusion, supplementation of 10% wheat in diet promoted the average daily gain and never altered microbial community structure and fermentation pattern, which can be effectively replace partial corn in Chinese Tibetan Sheep.
Collapse
Affiliation(s)
- Zhanhong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Sayed Haidar Abbas Raza
- Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Boyan Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Fengshuo Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Seham Sater Alhelaify
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Seham Saeed Alzahrani
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ohud Muslat Alharthy
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| |
Collapse
|
23
|
Liu M, Ma J, Xu J, Huangfu W, Zhang Y, Ali Q, Liu B, Li D, Cui Y, Wang Z, Sun H, Zhu X, Ma S, Shi Y. Fecal microbiota transplantation alleviates intestinal inflammatory diarrhea caused by oxidative stress and pyroptosis via reducing gut microbiota-derived lipopolysaccharides. Int J Biol Macromol 2024; 261:129696. [PMID: 38280701 DOI: 10.1016/j.ijbiomac.2024.129696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Infancy is a critical period in the maturation of the gut microbiota and a phase of susceptibility to gut microbiota dysbiosis. Early disturbances in the gut microbiota can have long-lasting effects on host physiology, including intestinal injury and diarrhea. Fecal microbiota transplantation (FMT) can remodel gut microbiota and may be an effective way to treat infant diarrhea. However, limited research has been conducted on the mechanisms of infant diarrhea and the regulation of gut microbiota balance through FMT, primarily due to ethical challenges in testing on human infants. Our study demonstrated that elevated Lipopolysaccharides (LPS) levels in piglets with diarrhea were associated with colon microbiota dysbiosis induced by early weaning. Additionally, LPS upregulated NLRP3 levels by activating TLR4 and inducing ROS production, resulting in pyroptosis, disruption of the intestinal barrier, bacterial translocation, and subsequent inflammation, ultimately leading to diarrhea in piglets. Through microbiota regulation, FMT modulated β-PBD-2 secretion in the colon by increasing butyric acid levels. This modulation alleviated gut microbiota dysbiosis, reduced LPS levels, attenuated oxidative stress and pyroptosis, inhibited the inflammatory response, maintained the integrity of the intestinal barrier, and ultimately reduced diarrhea in piglets caused by colitis. These findings present a novel perspective on the pathogenesis, pathophysiology, prevention, and treatment of diarrhea diseases, underscoring the significance of the interaction between FMT and the gut microbiota as a critical strategy for treating diarrhea and intestinal diseases in infants and farm animals.
Collapse
Affiliation(s)
- Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jixiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Junying Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qasim Ali
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China.
| |
Collapse
|
24
|
Yang Q, Liu H, Jafari H, Liu B, Wang Z, Su J, Wang F, Yang G, Sun M, Cheng J, Dong B, Li M, Gen M, Yu J. Metabolic changes before and after weaning in Dezhou donkey foals in relation to gut microbiota. Front Microbiol 2024; 14:1306039. [PMID: 38282742 PMCID: PMC10812615 DOI: 10.3389/fmicb.2023.1306039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Weaning is undoubtedly one of the most crucial stages in the growth and development of all mammalian animals, including donkey foals. Weaning is a dynamic and coordinated process of the body, which is closely associated with the health, nutrition, and metabolism of the host. Many studies have shown that the intestinal microbiota and serum metabolites of mammals exhibit different changes during lactation, weaning, and postweaning. However, the alterations in serum metabolites in donkey foals before and postweaning and the correlation between serum metabolites and intestinal microbiota are largely unknown. This study is based on the fecal 16S rRNA and serum metabolomes of Dezhou donkey foals. In total, 10 samples (fecal and serum) were collected during the following three stages: before weaning (F.M.1), during weaning (F.M.3), and postweaning (F.M.6). To study the alterations in intestinal microflora, serum metabolites, and their correlation before and postweaning. We found that with the growth and weaning progress of donkey foals, the intestinal microbiota of donkey foals underwent obvious changes, and the diversity of fecal bacteria increased (Chao1 and Shannon indexes). The main intestinal microbial flora of donkey foals include Bacteroides and Firmicutes. We found many microbiota that are associated with immunity and digestion in the postweaning group, such as Verrucomicrobiales, Clostridia, Oscillospiraceae, Akkermansia, and Rikenellaceae, which can be considered microbial markers for the transition from liquid milk to solid pellet feed. Clostridia and Oscillospiraceae can produce organic acids, including butyric acid and acetic acid, which are crucial for regulating the intestinal microecological balance of donkeys. Furthermore, the metabolome showed that the serum metabolites enriched before and postweaning were mainly related to arachidonic acid metabolism and riboflavin metabolism. Riboflavin was associated with the development of the small intestine and affected the absorption of the small intestine. We also found that the changes in the gut microbiome of the foals were significantly correlated with changes in serum metabolites, including lysophosphatidylcholine (LPC; 12,0) and positively correlated with Lachnoclostridium and Roseburia. To summarize, this study provides theoretical data for the changes in the intestinal microbiome and serum metabolism during the entire weaning period of donkey foals.
Collapse
Affiliation(s)
- Qiwen Yang
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Haibing Liu
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
| | - Halima Jafari
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Bing Liu
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
| | - Zhaofei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jiangtian Su
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Ge Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Minhao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jie Cheng
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
| | - Boying Dong
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
| | - Min Li
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
| | - Mingjian Gen
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
| | - Jie Yu
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
| |
Collapse
|
25
|
Wu Y, Jiao C, Diao Q, Tu Y. Effect of Dietary and Age Changes on Ruminal Microbial Diversity in Holstein Calves. Microorganisms 2023; 12:12. [PMID: 38276181 PMCID: PMC10818949 DOI: 10.3390/microorganisms12010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/27/2024] Open
Abstract
Ruminal microorganisms play a crucial role in the energy supply of ruminants and animal performance. We analyzed the variations in rumen bacteria and fungi at 45 d, 75 d, and 105 d by using 16SrRNA and ITS sequencing data and investigated their correlation with rumen fermentation. According to the results, rumen microflora tended to gradually mature with age, and bacterial and fungal establishment gradually stabilized. Upon comparing the three periods, the concentration of propionic acid increased significantly (p < 0.05) after weaning, and weaning accompanied by a transition in diet remarkably decreased (p < 0.05) rumen diversity in the short term and induced a corresponding change in the rumen microbiota composition. Bacteroidota, Actinobacteriota, and Firmicutes were the core bacterial phyla for all age periods. Ruminococcus, NK4A214_group, Sharpea, Rikenellaceae_RC9_gut_group, and norank_f__Butyricicoccaceae were the markedly abundant bacterial genera in pre-weaning. After weaning, the relative abundance of Erysipelotrichaceae_ UCG-002, Eubacterium_ruminantium_group, and Solobacterium significantly increased (p < 0.05). The relative abundance of Acetitomaculum increased with age with the greatest abundance noted at 105 d (37%). The dominant fungal phyla were Ascomycota and Basidiomycota, and Aspergillus and Xeromyces were the most abundant fungal genera after weaning. Trichomonascus, Phialosimplex, and Talaromyces were enriched at 105 d. However, the low abundance of Neocallimastigomycota was not detected throughout the study, which is worthy of further investigation. In addition, correlations were observed between age-related abundances of specific genera and microbiota functions and rumen fermentation-related parameters. This study revealed that rumen microbiota and rumen fermentation capacity are correlated, which contributed to a better understanding of the effects of age and diet on rumen microbiology and fermentation in calves.
Collapse
Affiliation(s)
| | | | | | - Yan Tu
- Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (C.J.); (Q.D.)
| |
Collapse
|
26
|
Du S, Bu Z, You S, Jiang Z, Su W, Wang T, Jia Y. Integrated rumen microbiome and serum metabolome analysis responses to feed type that contribution to meat quality in lambs. Anim Microbiome 2023; 5:65. [PMID: 38115081 PMCID: PMC10729572 DOI: 10.1186/s42523-023-00288-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 12/10/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Lifestyle factors, such as diet, are known to be a driver on the meat quality, rumen microbiome and serum metabolites. Rumen microbiome metabolites may be important for host health, the correlation between rumen microbiome and production of rumen metabolites are reported, while the impact of rumen microbiome on the serum metabolome and fatty acid of meat are still unclear. This study was designed to explore the rumen microbiome, serum metabolome and fatty acid of meat in response to the grass diet and concentrate diet to lambs, and the relationship of which also investigated. METHODS In the present study, 12 lambs were randomly divided into two groups: a grass diet (G) and a concentrate diet (C). Here, multiple physicochemical analyses combined with 16S rRNA gene sequences and metabolome analysis was performed to reveal the changes that in response to feed types. RESULTS The concentrate diet could improve the growth performance of lambs compared to that fed with the grass diet. The microbiome composition was highly individual, compared to the concentrate group, the abundance of Rikenellaceae_RC9_gut_group, F082_unclassified, Muribaculaceae_unclassified, Ruminococcaceae_NK4A214_group, Bacteroidetes_unclassified, and Bacteroidales_UCG-001_unclassified were significantly (P < 0.05) lower in the grass group, while, the abundance of Succinivibrio, Succinivibrionaceae_UCG-002, Fibrobacter and Christensenellaceae_R-7_group were significantly (P < 0.05) higher in the grass group. Serum metabolomics analysis combined with enrichment analysis revealed that serum metabolites were influenced by feed type as well as the metabolic pathway, and significantly affected serum metabolites involved in amino acids, peptides, and analogues, bile acids, alcohols and derivatives, linoleic acids derivatives, fatty acids and conjugates. Most of the amino acids, peptides, and analogues metabolites were positively associated with the fatty acid contents. Among the bile acids, alcohols and derivatives metabolites, glycocholic was positively associated with all fatty acid contents, except C18:0, while 25-Hydroxycholesterol and lithocholic acid metabolites were negatively associated with most of the fatty acid contents. CONCLUSION Correlation analysis of the association of microbiome with metabolite features, metabolite features with fatty acid provides us with comprehensive understanding of the composition and function of microbial communities. Associations between utilization or production were widely identified among affected microbiome, metabolites and fatty acid, and these findings will contribute to the direction of future research in lamb.
Collapse
Affiliation(s)
- Shuai Du
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Huhhot, 010019, Inner Mongolia, China
| | - Zhenkun Bu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agriculture Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Sihan You
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Huhhot, 010019, Inner Mongolia, China
| | - Zipeng Jiang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Weifa Su
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Tenghao Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Huhhot, 010019, Inner Mongolia, China.
- Zhejiang Qinglian Food Co., Ltd., Jiaxing, 314399, China.
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Huhhot, 010019, Inner Mongolia, China.
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
27
|
Luo Z, Liu T, Li P, Cheng S, Casper DP. Effects of Essential Oil and/or Encapsulated Butyrate on Fecal Microflora in Neonatal Holstein Calves. Animals (Basel) 2023; 13:3523. [PMID: 38003141 PMCID: PMC10668834 DOI: 10.3390/ani13223523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
This study was conducted to investigate the effects of feeding oregano essential oil, butyrate, and its mixture on the intestinal microbial diversity of calves. A completely randomized experimental design was used. Sixty-four healthy neonatal Holstein female calves with birth weight ≥ 35 kg were randomly divided into one control and three treatments (16 calves per group). The control group was fed normally, and the treatment group was fed oregano essential oil, butyrate, and their mixture, respectively. The experiment lasted for 70 days, and the lactation period lasted for 56 days. On days 55 and 70, rectal fecal samples from five calves were collected from each group for 16S rRNA amplification and sequencing. The results showed as follows: (1) the three treatments had no significant effects on the intestinal microbial community diversity, community uniformity, and community pedigree diversity of calves (p > 0.05). (2) At the phylum level, Firmicutes, Bacteroidota, Spriochatetota, Actinobacteriota, Firmicutes, and Bacteroidota gates of the main bacteria were detected in feces. (3) At the genus level, the top ten species with relative abundance detected are: norank_ F_Muribaaculaceae, Ruminococcus, unclassified_ F_ Lachnospiraceae, UCG-005, Prevotelaceae_NK3B31_Group, Prevotella, Bacteroides, Rikenellaceae_RC9_Gut_Group, and Faecalibacterium, Alloprevotella. (4) LEfSe analysis results show that the species with significant differences in the control group were f__Lachnospiraceae, o__Lachnospirales, o__Coriobacteriales, and c__Coriobacteriia, g__Megasphaera; in the essential oil group were g__Lachnospiraceae_AC2044_group, o__Izemoplasmatales, g__norank_f__norank_o__Izemoplasmatales, and f__norank_o__Izemoplasmatales; in the sodium butyrate group were g__Lachnospiraceae_NK4A136_group, and g__Sharpea, g__Fournierella; in the mixed group were g__Flavonifractor, and g__UBA1819. (5) The functional prediction analysis of calf gut microbes, found on the KEGG pathway2, shows that essential oil significantly improved membrane transport, Sodium butyrate inhibits lipid metabolism and improves the body's resistance to disease. (p < 0.05). (6) The effects of each treatment on the intestinal microbial structure of calves did not last for 14 days after the treatment was stopped. In conclusion, the addition of oregano essential oil, butyrate, and its mixtures to milk fed to calves can modulate the microbial structure, and it is recommended that oregano essential oil and butyrate be used separately, as a mixture of the two can increase the rate of diarrhea in calves.
Collapse
Affiliation(s)
- Zhihao Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (P.L.); (S.C.)
| | - Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (P.L.); (S.C.)
| | - Peng Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (P.L.); (S.C.)
| | - Shuru Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (P.L.); (S.C.)
| | - David P. Casper
- Casper’s Calf Ranch, 4890 West Lily Creek Road, Freeport, IL 61032, USA;
- Department of Animal Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
28
|
Cholewińska P, Szeligowska N, Wojnarowski K, Nazar P, Greguła-Kania M, Junkuszew A, Rant W, Radzik-Rant A, Marcinkowska A, Bodkowski R. Selected bacteria in sheep stool depending on breed and physiology state. Sci Rep 2023; 13:11739. [PMID: 37474553 PMCID: PMC10359392 DOI: 10.1038/s41598-023-38785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
One of the important factors influencing the microbial community of ruminants, besides environment or diet, are breed and physiology. Therefore, the purpose of this study was to assess these changes in the levels of basic microbial phyla and families. For this study, qPCR analysis was performed to determine the level of bacteria (Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria clusters and Clostridiaceae, Lactobacillaceae families) in the feces of ewes of three native Polish sheep breeds (Polish Lowland Sheep (PON), Świniarka Sheep (SW), and synthetic line BCP) at different physiological periods (conception, early pregnancy, lambing, end of lactation). The animals were kept in the same environment and were at the same age (2-years). The results showed a significant effect of both breed (p = 0.038) and physiological period (p < 0.05, p < 0.01) on the levels of bacteria analyzed. The breed showed differences across physiological periods. The influence of the race factor was noted primarily between the BCP synthetic line and the other two breeds (differences in terms of all analyzed clusters and families except Actinobacteria phyla). In the case of SW and PON, however, the observed differences were only at the level of Proteobacteria cluster and Clostridiaceae family. On the other hand, the early pregnant and lambing periods were the most microbiologically diverse in terms of the analyzed clusters and families of bacteria.
Collapse
Affiliation(s)
- Paulina Cholewińska
- Chair for Fish Diseases and Fisheries Biology, Ludwig-Maximilians-University of Munich, 80539, Munich, Germany
| | - Natalia Szeligowska
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126, Naples, Italy
| | - Konrad Wojnarowski
- Chair for Fish Diseases and Fisheries Biology, Ludwig-Maximilians-University of Munich, 80539, Munich, Germany
| | - Paulina Nazar
- Department of Animal Breeding and Agriculture Advisory, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Monika Greguła-Kania
- Department of Animal Breeding and Agriculture Advisory, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Andrzej Junkuszew
- Department of Animal Breeding and Agriculture Advisory, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Witold Rant
- Institute of Animal Breeding, Warsaw University of Life Sciences-SGGW, 02-786, Warsaw, Poland
| | - Aurelia Radzik-Rant
- Institute of Animal Breeding, Warsaw University of Life Sciences-SGGW, 02-786, Warsaw, Poland
| | - Anna Marcinkowska
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Robert Bodkowski
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland.
| |
Collapse
|
29
|
Liu M, Wang Z, Sun L, Wang Y, Li J, Ge G, Jia Y, Du S. Effects of different forage proportions in fermented total mixed ration on muscle fatty acid profile and rumen microbiota in lambs. Front Microbiol 2023; 14:1197059. [PMID: 37520349 PMCID: PMC10374311 DOI: 10.3389/fmicb.2023.1197059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Objective The objectives of this study were to evaluate the effects of different forage proportions in the fermented total mixed ration (FTMR) on growth performance, muscle fatty acid profile, and rumen microbiota of lambs. Methods Thirty 6-month-old small tail Han sheep × Ujumqin lambs with initial body weight (BW) of 27.8 ± 0.90 kg were selected for the test and divided into two groups of 15 sheep in each treatment (three pens per treatment and five lambs per pen) according to the principle of homogeneity. Two isoenergetic and isonitrogenous diets were formulated according to the NRC. The diet treatments were designed as (1) OH treatment containing 25% alfalfa hay and 35% oat hay, and (2) AH treatment containing 35% alfalfa hay with 25% oat hay. The forage-to-concentrate ratio for both diets was 65: 35 (DM basis). Three replicates were randomly selected from each treatment to determine growth performance, fatty acid profile and rumen bacterial communities in lambs. Results Results revealed no statistically significant (p > 0.05) differences in dry matter intake and average daily gain between the two diet groups. Cholesterol and intramuscular fat were significantly (p > 0.05) higher in the AH group, while no statistically significant difference (p > 0.05) was found in pH24 value. The muscle fatty acid compositions of lambs were obviously (p < 0.05) influenced by the diet treatments. Compared with the OH group, the C16:1, C17:0, and C20:3n6 contents were higher (p < 0.05) in the AH group, whereas the content of C18:1n9c, C20:1, C18:3n3, and C22:6n3 was obviously (p < 0.05) increased in the OH group. The monounsaturated fatty acid (MUFA) contents were significantly higher in the OH group, whereas no significant differences (p > 0.05) were detected in saturated fatty acid (SFA) and polyunsaturated fatty acid (PUFA) contents among the two diet treatments. Bacterial composition was generally separated into two clusters based on principal coordinate analysis, and the OH group had a higher Shannon index. The relative abundance at the genes level of the Rikenellaceae_RC9_gut_group was obviously (p < 0.05) increased in the AH group and the relative abundances of Prevotella_1, Fibrobacter, and Bacteroidales_UCG_001_unclassified were obviously (p < 0.05) enriched in the OH group. Integrated correlation analysis also underscored a possible link between the muscle fatty acid compositions and significantly altered rumen microbiota. Conclusion Overall, oat-based roughage in FTMR could promote a beneficial lipid pattern in the Longissimus lumborum muscles of lambs. These findings provide a potential insight into diet effects on fatty acid profile and the rumen microbiome of lambs, which may help make decisions regarding feeding.
Collapse
Affiliation(s)
- Mingjian Liu
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhijun Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yu Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Junfeng Li
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Shuai Du
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
30
|
Xu D, Cheng J, Zhang D, Huang K, Zhang Y, Li X, Zhao Y, Zhao L, Wang J, Lin C, Yang X, Zhai R, Cui P, Zeng X, Huang Y, Ma Z, Liu J, Han K, Liu X, Yang F, Tian H, Weng X, Zhang X, Wang W. Relationship between hindgut microbes and feed conversion ratio in Hu sheep and microbial longitudinal development. J Anim Sci 2023; 101:skad322. [PMID: 37742310 PMCID: PMC10576521 DOI: 10.1093/jas/skad322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023] Open
Abstract
Feed efficiency is an important indicator in the sheep production process, which plays an important role in improving economic benefits and strengthening energy conservation and emission reduction. Compared with the rumen, the fermentation of the hindgut microorganisms can also provide part of the energy for the host, and the composition of the hindgut microorganisms will affect the feed efficiency. Therefore, we hope to find new ways to regulate sheep feed efficiency by studying the sheep gut microbes. In this study, male Hu sheep with the same birth date were raised under the same conditions until 180 d old. The sheep were divided into high and low groups according to the feed conversion ratio (FCR) at 80 to 180 d old, and the differences in rectal microorganisms between the two groups were compared. The permutational multivariate analysis (PERMANOVA) test showed that there were differences in microorganisms between the two groups (P < 0.05). Combined with linear fitting analysis, a total of six biomarkers were identified, including Ruminobacter, Eubacterium_xylanophilum_group, Romboutsia, etc. Functional enrichment analysis showed that microorganisms may affect FCR through volatile fatty acids synthesis and inflammatory response. At the same time, we conducted a longitudinal analysis of the hindgut microbes, sampling nine-time points throughout the sheep birth to market stages. The microbiota is clearly divided into two parts: before weaning and after weaning, and after weaning microbes are less affected by before weaning microbial composition.
Collapse
Affiliation(s)
- Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Kai Huang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Yukun Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Kunchao Han
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaoqiang Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Fan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Huibin Tian
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiuxiu Weng
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| |
Collapse
|