1
|
Jung U, Kim M, Dowker-Key P, Noë S, Bettaieb A, Shepherd E, Voy B. Hypoxia promotes proliferation and inhibits myogenesis in broiler satellite cells. Poult Sci 2024; 103:103203. [PMID: 37980759 PMCID: PMC10685027 DOI: 10.1016/j.psj.2023.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023] Open
Abstract
Breast muscle myopathies in broilers compromise meat quality and continue to plague the poultry industry. Broiler breast muscle myopathies are characterized by impaired satellite cell (SC)-mediated repair, and localized tissue hypoxia and dysregulation of oxygen homeostasis have been implicated as contributing factors. The present study was designed to test the hypothesis that hypoxia disrupts the ability of SC to differentiate and form myotubes, both of which are key components of myofiber repair, and to determine the extent to which effects are reversed by restoration of oxygen tension. Primary SC were isolated from pectoralis major of young (5 d) Cobb 700 chicks and maintained in growth conditions or induced to differentiate under normoxic (20% O2) or hypoxic (1% O2) conditions for up to 48 h. Hypoxia enhanced SC proliferation while inhibiting myogenic potential, with decreased fusion index and suppressed myotube formation. Reoxygenation after hypoxia partially reversed effects on both proliferation and myogenesis. Western blotting showed that hypoxia diminished myogenin expression, activated AMPK, upregulated proliferation markers, and increased molecular signaling of cellular stress. Hypoxia also promoted accumulation of lipid droplets in myotubes. Targeted RNAseq identified numerous differentially expressed genes across differentiation under hypoxia, including several genes that have been associated with myopathies in vivo. Altogether, these data demonstrate localized hypoxia may influence SC behavior in ways that disrupt muscle repair and promote the formation of myopathies in broilers.
Collapse
Affiliation(s)
- Usuk Jung
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Minjeong Kim
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Presley Dowker-Key
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Simon Noë
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Ahmed Bettaieb
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Elizabeth Shepherd
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Brynn Voy
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
2
|
Ke S, Feng Y, Luo L, Qin W, Liu H, Nie J, Liang B, Ma H, Xie M, Li J, Niu Z, Li G, Tang A, Xia W, He G. Isolation, identification, and induced differentiation of satellite cells from skeletal muscle of adult tree shrews. In Vitro Cell Dev Biol Anim 2024; 60:36-53. [PMID: 38127228 DOI: 10.1007/s11626-023-00836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
A method for the in vitro isolation, purification, identification, and induced differentiation of satellite cells from adult tree shrew skeletal muscle was established. The mixed enzyme digestion method and differential adhesion method were used to obtain skeletal muscle satellite cells, which were identified and induced to differentiate to verify their pluripotency. The use of a mixture of collagenase II, hyaluronidase IV, and DNase I is an efficient method for isolating adult tree shrew skeletal muscle satellite cells. The P3 generation of cells had good morphology, rapid proliferation, high viability, and an "S"-shaped growth curve. Reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence staining indicated that marker genes or proteins were expressed in skeletal muscle satellite cells. After myogenic differentiation was induced, multiple-nucleated myotubes were observed, and the MyHC protein was expressed. The expression of myogenic marker genes changed with the differentiation process. After the induction of adipogenic differentiation, orange-red lipid droplets were observed, and the expression of adipogenic marker genes increased gradually with the differentiation process. In summary, satellite cells from adult tree shrew skeletal muscle were successfully isolated using a mixed enzyme digestion method, and their potential for differentiation into myogenic and adipogenic cells was confirmed, laying a foundation for further in vitro study of tree shrew muscle damage.
Collapse
Affiliation(s)
- Shenghui Ke
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University),Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China
| | - Yiwei Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University),Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China
| | - Liying Luo
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University),Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China
| | - Wanzhao Qin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University),Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China
| | - Huayu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University),Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China
| | - Jingchong Nie
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University),Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China
| | - Beijiang Liang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University),Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China
| | - Hongjie Ma
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University),Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China
| | - Mao Xie
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University),Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China
| | - Jingyu Li
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University),Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China
| | - Zhijie Niu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University),Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China
| | - Guojian Li
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Anzhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University),Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China
| | - Wei Xia
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University),Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China.
| | - Guangyao He
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University),Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Kim WS, Daddam JR, Keng BH, Kim J, Kim J. Heat shock protein 27 regulates myogenic and self-renewal potential of bovine satellite cells under heat stress. J Anim Sci 2023; 101:skad303. [PMID: 37688555 PMCID: PMC10629447 DOI: 10.1093/jas/skad303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023] Open
Abstract
While satellite cells play a key role in the hypertrophy, repair, and regeneration of skeletal muscles, their response to heat exposure remains poorly understood, particularly in beef cattle. This study aimed to investigate the changes in the transcriptome, proteome, and proliferation capability of bovine satellite cells in response to different levels of heat stress (HS) and exposure times. Satellite cells were isolated from 3-mo-old Holstein bulls (body weight: 77.10 ± 2.02 kg) and subjected to incubation under various temperature conditions: 1) control (38 °C; CON), 2) moderate (39.5 °C; MHS), and extreme (41 °C; EHS) for different durations ranging from 0 to 48 h. Following 3 h of exposure to extreme heat (EHS), satellite cells exhibited significantly increased gene expression and protein abundance of heat shock proteins (HSPs; HSP70, HSP90, HSP20) and paired box gene 7 (Pax7; P < 0.05). HSP27 expression peaked at 3 h of EHS and remained elevated until 24 h of exposure (P < 0.05). In contrast, the expression of myogenic factor 5 (Myf5) and paired box gene 3 (Pax3) was decreased by EHS compared to the control at 3 h of exposure (P < 0.05). Notably, the introduction of HSP27 small interference RNA (siRNA) transfection restored Myf5 expression to control levels, suggesting an association between HSP27 and Myf5 in regulating the self-renewal properties of satellite cells upon heat exposure. Immunoprecipitation experiments further confirmed the direct binding of HSP27 to Myf5, supporting its role as a molecular chaperone for Myf5. Protein-protein docking algorithms predicted a high probability of HSP27-Myf5 interaction as well. These findings indicate that extreme heat exposure intrinsically promotes the accumulation of HSPs and modulates the early myogenic regulatory factors in satellite cells. Moreover, HSP27 acts as a molecular chaperone by binding to Myf5, thereby regulating the division or differentiation of satellite cells in response to HS. The results of this study provide a better understanding of muscle physiology in heat-stressed cells, while unraveling the intricate molecular mechanisms that underlie the HS response in satellite cells.
Collapse
Affiliation(s)
- Won Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jayasimha R Daddam
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Boon Hong Keng
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Jaehwan Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jongkyoo Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
- Animal Science and Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|