1
|
Wang Y, Wang S, Mabrouk I, Zhou Y, Fu X, Song Y, Ma J, Hu X, Yang Z, Liu F, Hou J, Yu J, Sun Y. In ovo injection of AZD6244 suppresses feather follicle development by the inhibition of ERK and Wnt/β-catenin pathways in goose embryos ( Anser cygnoides). Br Poult Sci 2024; 65:307-314. [PMID: 38393940 DOI: 10.1080/00071668.2024.2309550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/05/2024] [Indexed: 02/25/2024]
Abstract
1. Feathers are an important product from poultry, and the state of feather growth and development plays an important role in their economic value.2. In total, 120 eggs were selected for immunoblotting and immunolocalisation experiments of ERK and β-catenin proteins in different developmental stages of goose embryos. The ERK protein was highly expressed in the early stage of goose embryo development, while β-catenin protein was highly expressed in the middle stage of embryo development.3. The 120 eggs were divided into four treatment groups, including an uninjected group (BLANK), a group injected with 100 µl of cosolvent (CK), a group injected with 100 µl of AZD6244 containing cosolvent in a dose of 5 mg/kg AZD6244 containing cosolvent (AZD5) and a group injected with 100 µl of AZD6244 containing cosolvent in a dose of 15 mg/kg AZD6244 containing cosolvent (AZD15). The eggs were injected on the ninth day of embryonic development (E9). Samples were collected at E21.5 to observe feather width, feather follicle diameter, ERK and Wnt/β-catenin pathway protein expression.4. The AZD5 and AZD15 doses were within the embryonic safety range compared to the BLANK and CK groups and had no significant effect on the survival rate and weight at the inflection point, but significantly reduced the feather width and feather follicle diameter (p < 0.05). The AZD6244 treatment inhibited ERK protein phosphorylation levels and blocked the Wnt/β-catenin pathway, which in turn significantly down-regulated the expression levels of FZD4, β-catenin, TCF4 and LEF1 (p < 0.05), with an inhibitory effect in the AZD15 group being more significant. The immunohistochemical results of β-catenin and p-ERK were consistent with Western blot results.5. The small molecule inhibitor AZD6244 regulated the growth and development of feather follicles in goose embryos by the ERK and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Y Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - S Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - I Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - X Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - X Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Z Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - F Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Hou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Song Y, Ma J, Liu Q, Mabrouk I, Zhou Y, Yu J, Liu F, Wang J, Yu Z, Hu J, Sun Y. Protein profile analysis of Jilin white goose testicles at different stages of the laying cycle by DIA strategy. BMC Genomics 2024; 25:326. [PMID: 38561689 PMCID: PMC10986116 DOI: 10.1186/s12864-024-10166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Jilin white goose is an excellent local breed in China, with a high annual egg production and laying eggs mainly from February to July each year. The testis, as the only organ that can produce sperm, can affect the sexual maturity and fecundity of male animals. Its growth and development are affected and regulated by a variety of factors. Proteomics is generally applied to identify and quantify proteins in cells and tissues in order to understand the physiological or pathological changes that occur in tissues or cells under specific conditions. Currently, the female poultry reproductive system has been extensively studied, while few related studies focusing on the regulatory mechanism of the reproductive system of male poultry have been conducted. RESULTS A total of 1753 differentially expressed proteins (DEPs) were generated in which there were 594, 391 and 768 different proteins showing differential expression in three stages, Initial of Laying Cycle (ILC), Peak of Laying Cycle (PLC) and End of Laying Cycle (ELC). Furthermore, bioinformatics was used to analyze the DEPs. Gene ontology (GO) enrichment, Clusters of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analysis were adopted. All DEPs were found to be implicated in multiple biological processes and pathways associated with testicular development, such as renin secretion, Lysosomes, SNARE interactions in vesicle trafficking, the p53 signaling pathway and pathways related to metabolism. Additionally, the reliability of transcriptome results was verified by real-time quantitative PCR by selecting the transcript abundance of 6 selected DEPs at the three stages of the laying cycle. CONCLUSIONS The funding in this study will provide critical insight into the complex molecular mechanisms and breeding practices underlying the developmental characteristics of testicles in Jilin white goose.
Collapse
Affiliation(s)
- Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jingyun Ma
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Qiuyuan Liu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jin Yu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Fengshuo Liu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jingbo Wang
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Zhiye Yu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China.
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China.
- Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, 130118, Changchun, China.
| |
Collapse
|
3
|
Qi S, Xu X, Liu L, Wang G, Bao Q, Zhang Y, Zhang Y, Zhang Y, Xu Q, Zhao W, Chen G. The development rule of feathers and application of hair root tissue in sex identification of Yangzhou geese. Poult Sci 2024; 103:103529. [PMID: 38350388 PMCID: PMC10875616 DOI: 10.1016/j.psj.2024.103529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
Accurate gender identification is crucial for the study of bird reproduction and evolution. The current study aimed to explore and evaluate the effectiveness of a noninvasive method for gender identification in Yangzhou geese. In this experiment, 600 goose eggs were collected. Hair root tissues were used for PCR amplification, molecular sequencing, and anal inversion for early sex recognition in goslings. According to the DNA amplification results for the feather pulp tissue of 2-wk-old geese, bands appeared at 436 bp (CHD1-Z) and 330 bp (CHD1-W) upon gel electrophoresis. This method considered the base of goose feathers to accelerate the process of gender recognition. By examining the sex of anatomized poultry for verification, the accuracy rate of PCR gel electrophoresis and molecular sequencing sex identification was 100%, whereas the average accuracy rate of anal inversion was 97.41%. In the comparison of feather growth trends at 0 to 18 wk of age, the feather root weight (FRW), feather root length (FRL), feather branch length (FBL), and feather shaft diameter (FSD) of Yangzhou goose of the same age were not significantly different between males and females (P > 0.05). At 6 wk of age, the FRW, FRL, and FSD in males and FRL in females increased rapidly; their growth increased by 84.43, 67.58, 45.10, and 69.42%, respectively. At 10 wk of age, the male FRL, male FBL, and female FBL increased by 37.31, 34.81, and 21.72, respectively. The Boltzmann model was found to be the best-fitting model for the feathers of male Yangzhou geese. Early sex identification based on feather growth trends between the sexes is not feasible. This study provides a convenient and reliable technical means for early sex identification of waterfowl and serves as an ecological strategy for protecting the reproduction of poultry populations.
Collapse
Affiliation(s)
- Shangzong Qi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Xinlei Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Linyu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Guoyao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Qiang Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Yong Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Jiangsu Yangzhou 225009, China
| | - Yu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Yang Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Wenming Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China.
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China; Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, P.R. China
| |
Collapse
|
4
|
Wang S, Wang Y, Hu X, Zhou Y, Yang Z, Hou J, Liu F, Liu Q, Mabrouk I, Yu J, Li X, Xue G, Sun Y. Dermal FOXO3 activity in response to Wnt/β-catenin signaling is required for feather follicle development of goose embryos (Anser cygnoides). Poult Sci 2024; 103:103424. [PMID: 38330682 PMCID: PMC10865040 DOI: 10.1016/j.psj.2024.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
Feather is an important economic trait of poultry, and growth and development state of feathers plays an important role in the economic value of poultry. Dermal fibroblasts are required for structural integrity of the skin and for feather follicle development. How FOXO3 affects feather follicle development as skin tissues change during goose embryo (Anser cygnoides) development and growth is not well understood. Here, we demonstrate that in vitro culture of single feathers and skin tissue results in changes in feather morphological structure by adding drugs to the culture medium that affect FOXO3 expression. We used feather follicles to show that during growth, the root location of feathers, the dermis layer, affects cell proliferation and apoptosis and regulates the expression of major genes in the Wingless-types/beta-catenin (Wnt/β-catenin) signaling pathway through the activity of FOXO3 in dermal fibroblasts. Feathers and dorsal skin tissues develop the correct structure, but feather length and width and feather follicle diameter change significantly (p < 0.05) without significant changes in feather follicle density (p > 0.05). Transfected dermal fibroblasts also showed that FOXO3 affected the formation and development of feather follicles in the embryonic stage by regulating the Wnt/β-catenin signaling pathway. Therefore, this study reveals the critical role of dermal fibroblast-FOXO3-induced Wnt/β-catenin signaling in promoting the formation and development of embryonic feather follicles.
Collapse
Affiliation(s)
- Sihui Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yudong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiangman Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhiyi Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jiahui Hou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Fengshuo Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qiuyuan Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jin Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyue Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guizhen Xue
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
5
|
Wang S, Wang Y, Ichraf M, Zhou Y, Song Y, Fu X, Liu T, Ma J, Zhuang F, Hu X, Hou J, Yu J, Yang Z, Liu F, Sun Y. Expression of FOXO3 in the skin follicles of goose embryos during embryonic development. Br Poult Sci 2023; 64:586-593. [PMID: 37334805 DOI: 10.1080/00071668.2023.2226078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
1. The Forkhead box O3 (FOXO3) transcription factor is a crucial regulator in controlling cell metabolism, proliferation, apoptosis, migration and response to oxidative stress. However, FOXO3 has not previously been studied much in the embryonic skin follicles of geese.2. This study used Zhedong white geese (Anser cygnoides), Jilin white geese (Anser cygnoides) and Hungarian white geese (Anser anser). The feather follicle structure in the dorsal skin during embryonic stages was examined with haematoxylin and eosin (HE) and Pollak staining. The FOXO3 protein content in the embryonic dorsal skin from feather follicles was detected using western blotting and quantitative real-time PCR.3. The mRNA expression level of FOXO3 in the dorsal skin of Jilin white geese was highly expressed on embryonic day 23 (E23; P < 0.01), while mRNA expression of FOXO3 was highly expressed in the feather follicle of Hungarian white geese at E28 (P < 0.01). The expression of FOXO3 protein mainly concentrated in the early embryonic phase among these goose breeds (P < 0.05). This suggested that FOXO3 plays a crucial role in the development and growth of embryonic dorsal skin of feather follicles. The location of the FOXO3 protein was determined using the IHC technique, which further verified the effect of FOXO3 in the dorsal skin for feather follicles during embryogenesis.4. The study demonstrated the differential expression and localisation of the FOXO3 gene among different goose species. It was speculated that the gene could potentially improve goose feather follicle development and feather-related traits and provide a basis for further understanding of FOXO3 function in the dorsal tissue of goose embryos.
Collapse
Affiliation(s)
- S Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - M Ichraf
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - X Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - T Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - F Zhuang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - X Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Hou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Z Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - F Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|