1
|
Laghouaouta H, Fraile LJ, Pena RN. Selection for Resilience in Livestock Production Systems. Int J Mol Sci 2024; 25:13109. [PMID: 39684818 DOI: 10.3390/ijms252313109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Selective breeding for improved animal resilience is becoming critical to increase the sustainability of production systems. Despite the existence of a genetic component for resilience, breeding for improved resilience has been limited by the absence of a consensus on its definition and quantifying method. In this work, we provide a review of (i) the definition of resilience and related concepts such as robustness, resistance, and tolerance; (ii) possible quantifying methods for resilience; (iii) its genetic background; and (iv) insights about its improvement through selective breeding. We suggest that a resilient animal may be defined as an individual that is able to cope with a perturbation(s) and rapidly bounce back to normal functioning if altered. Furthermore, since challenging conditions lead to trade-offs and, consequently, deviations between basic physiological functions, we suggest using these deviations as indicators for resilience. These resilience indicators may also be used as proxies to study the genetic determinism and background of resilience in livestock species. Finally, we discuss possible strategies to improve resilience and review the implementation of associated genetic markers for resilience indicators in selection schemes.
Collapse
Affiliation(s)
- Houda Laghouaouta
- Agrotecnio-CERCA Center, Department of Animal Science, University of Lleida, 25198 Lleida, Catalonia, Spain
| | - Lorenzo J Fraile
- Agrotecnio-CERCA Center, Department of Animal Science, University of Lleida, 25198 Lleida, Catalonia, Spain
| | - Ramona N Pena
- Agrotecnio-CERCA Center, Department of Animal Science, University of Lleida, 25198 Lleida, Catalonia, Spain
| |
Collapse
|
2
|
Fanalli SL, Gomes JD, de Novais FJ, Gervásio IC, Fukumasu H, Moreira GCM, Coutinho LL, Koltes J, Amaral AJ, Cesar ASM. Key co-expressed genes correlated with blood serum parameters of pigs fed with different fatty acid profile diets. Front Genet 2024; 15:1394971. [PMID: 39021677 PMCID: PMC11252010 DOI: 10.3389/fgene.2024.1394971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
This study investigated how gene expression is affected by dietary fatty acids (FA) by using pigs as a reliable model for studying human diseases that involve lipid metabolism. This includes changes in FA composition in the liver, blood serum parameters and overall metabolic pathways. RNA-Seq data from 32 pigs were analyzed using Weighted Gene Co-expression Network Analysis (WGCNA). Our aim was to identify changes in blood serum parameters and gene expression between diets containing 3% soybean oil (SOY3.0) and a standard pig production diet containing 1.5% soybean oil (SOY1.5). Significantly, both the SOY1.5 and SOY3.0 groups showed significant modules, with a higher number of co-expressed modules identified in the SOY3.0 group. Correlated modules and specific features were identified, including enriched terms and pathways such as the histone acetyltransferase complex, type I diabetes mellitus pathway, cholesterol metabolism, and metabolic pathways in SOY1.5, and pathways related to neurodegeneration and Alzheimer's disease in SOY3.0. The variation in co-expression observed for HDL in the groups analyzed suggests different regulatory patterns in response to the higher concentration of soybean oil. Key genes co-expressed with metabolic processes indicative of diseases such as Alzheimer's was also identified, as well as genes related to lipid transport and energy metabolism, including CCL5, PNISR, DEGS1. These findings are important for understanding the genetic and metabolic responses to dietary variation and contribute to the development of more precise nutritional strategies.
Collapse
Affiliation(s)
- Simara Larissa Fanalli
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, SãoPaulo, Brazil
| | - Júlia Dezen Gomes
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| | - Francisco José de Novais
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, AB, Canada
| | - Izally Carvalho Gervásio
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| | - Heidge Fukumasu
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, SãoPaulo, Brazil
| | | | - Luiz Lehmann Coutinho
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| | - James Koltes
- Animal Science Department, Iowa State University, Ames, IA, United States
| | - Andreia J. Amaral
- Mediterranean Institute for Agriculture, Environment and Development (MED), Évora, Portugal
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinarian Medicine, University of Lisbon, Lisbon, Portugal
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, SãoPaulo, Brazil
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, Brazil
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| |
Collapse
|
3
|
Lim KS, Cheng J, Tuggle C, Dyck M, Canada P, Fortin F, Harding J, Plastow G, Dekkers J. Genetic analysis of the blood transcriptome of young healthy pigs to improve disease resilience. Genet Sel Evol 2023; 55:90. [PMID: 38087235 PMCID: PMC10714454 DOI: 10.1186/s12711-023-00860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Disease resilience is the ability of an animal to maintain productive performance under disease conditions and is an important selection target. In pig breeding programs, disease resilience must be evaluated on selection candidates without exposing them to disease. To identify potential genetic indicators for disease resilience that can be measured on selection candidates, we focused on the blood transcriptome of 1594 young healthy pigs with subsequent records on disease resilience. Transcriptome data were obtained by 3'mRNA sequencing and genotype data were from a 650 K genotyping array. RESULTS Heritabilities of the expression of 16,545 genes were estimated, of which 5665 genes showed significant estimates of heritability (p < 0.05), ranging from 0.05 to 0.90, with or without accounting for white blood cell composition. Genes with heritable expression levels were spread across chromosomes, but were enriched in the swine leukocyte antigen region (average estimate > 0.2). The correlation of heritability estimates with the corresponding estimates obtained for genes expressed in human blood was weak but a sizable number of genes with heritable expression levels overlapped. Genes with heritable expression levels were significantly enriched for biological processes such as cell activation, immune system process, stress response, and leukocyte activation, and were involved in various disease annotations such as RNA virus infection, including SARS-Cov2, as well as liver disease, and inflammation. To estimate genetic correlations with disease resilience, 3205 genotyped pigs, including the 1594 pigs with transcriptome data, were evaluated for disease resilience following their exposure to a natural polymicrobial disease challenge. Significant genetic correlations (p < 0.05) were observed with all resilience phenotypes, although few exceeded expected false discovery rates. Enrichment analysis of genes ranked by estimates of genetic correlations with resilience phenotypes revealed significance for biological processes such as regulation of cytokines, including interleukins and interferons, and chaperone mediated protein folding. CONCLUSIONS These results suggest that expression levels in the blood of young healthy pigs for genes in biological pathways related to immunity and endoplasmic reticulum stress have potential to be used as genetic indicator traits to select for disease resilience.
Collapse
Affiliation(s)
- Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA, USA
- Department of Animal Resource Science, Kongju National University, Yesan, Chungnam, Republic of Korea
| | - Jian Cheng
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Michael Dyck
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - PigGen Canada
- PigGen Canada Research Consortium, Guelph, ON, Canada
| | - Frederic Fortin
- Centre de Développement du Porc du Québec Inc. (CDPQ), Québec City, QC, Canada
| | - John Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jack Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|