1
|
Cordero JF, Harvey KM, Drewery ME, McKnight MG, Karisch BB, Durst LS, Colombo EA, Cooke RF, Russell JR. Impacts of trace mineral source and ancillary drench on steer performance during a 60-day backgrounding phase. Animal 2024; 18:101080. [PMID: 38320346 DOI: 10.1016/j.animal.2024.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Nutritional approaches to optimize cattle health and performance during the receiving period are warranted. This experiment evaluated the impacts of supplementing organic complexed Cu, Co, Mn, and Zn on productive and health responses of high-risk beef cattle during a 60-day backgrounding phase. Crossbred steers (120) were purchased at auction and transported to the experimental facility, where BW was recorded (day-1; initial shrunk BW = 227.7 ± 1.3 kg). On day 0, steers were ranked by BW and allocated to one of eight groups and housed in drylot pens equipped with GrowSafe automated feeding systems (Model 8000; two bunks/pen). Groups were randomly assigned to receive a total mixed ration containing: (1) sulfate sources of Cu, Co, Mn, and Zn (INR; n = 40); (2) organic complexed sources of the same minerals (AAC; Zinpro Availa 4 based on a metal:amino acid complex ratio of 1:1 for Zn, Cu, and Mn in addition to cobalt glucoheptonate; Zinpro Corp., Eden Prairie, MN; n = 40); or (3) AAC and an organic complexed trace mineral drench (APF; 30 mL/hd; Zinpro ProFusion, Zinpro Corp.) on day 0 and with morbidity treatment (n = 40). Diets provided the same daily amount of all nutrients and minerals based on 7 g/steer daily of Zinpro Availa 4. Steers were assessed for bovine respiratory disease (BRD) signs daily. Liver biopsies were performed on days 0, 28 and 60. Blood samples were collected on days 0, 2, 6, 10, 13, 21, 28 and 45. No treatment differences were detected (P ≥ 0.23) for feed intake, final BW, average daily gain, or BRD incidence. Mean liver Co concentrations were greater (P = 0.02) in AAC and APF compared to INR steers. Mean liver Cu was greater (P = 0.02) in APF compared to AAC steers. Liver Zn tended to be greater (P = 0.10) on day 28 but less (P = 0.05) on day 60 for INR compared to AAC and APF steers. Plasma cortisol was lowest (P = 0.05) for AAC steers on day 6, whereas AAC steers tended to have greater (P = 0.09) plasma cortisol on day 13 compared with APF. Plasma haptoglobin tended to be greater (P ≤ 0.10) for INR steers on days 28 and 45 compared to AAC and APF. While supplementing cattle with AAC or INR results in similar animal performance and clinical disease, AAC and APF reduce stress and acute phase protein responses.
Collapse
Affiliation(s)
- J F Cordero
- Prairie Research Unit, Mississippi State University, Prairie, MS 39756, USA
| | - K M Harvey
- Prairie Research Unit, Mississippi State University, Prairie, MS 39756, USA.
| | - M E Drewery
- Prairie Research Unit, Mississippi State University, Prairie, MS 39756, USA
| | - M G McKnight
- Prairie Research Unit, Mississippi State University, Prairie, MS 39756, USA
| | - B B Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762 USA
| | - L S Durst
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762 USA
| | - E A Colombo
- Department of Animal Science, Texas A&M University, College Station, TX 77845 USA
| | - R F Cooke
- Department of Animal Science, Texas A&M University, College Station, TX 77845 USA
| | - J R Russell
- Zinpro Corporation, Eden Prairie, MN 55344, USA
| |
Collapse
|
2
|
Chitko-McKown CG, Bennett GL, Kuehn LA, DeDonder KD, Apley MD, Harhay GP, Clawson ML, Workman AM, White BJ, Larson RL, Capik SF, Lubbers BV. Cytokine and Haptoglobin Profiles From Shipping Through Sickness and Recovery in Metaphylaxis- or Un-Treated Cattle. Front Vet Sci 2021; 8:611927. [PMID: 33816585 PMCID: PMC8017278 DOI: 10.3389/fvets.2021.611927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/05/2021] [Indexed: 12/02/2022] Open
Abstract
Fifty-six head of cattle, 28 animals with bovine respiratory disease complex (BRDC), and 28 healthy animals that were matched by treatment, sale barn of origin, day, and interactions among these variables, were identified from a population of 180 animals (60 each purchased at three sale barns located in Missouri, Tennessee, and Kentucky) enrolled in a study comparing animals receiving metaphylaxis to saline-treated controls. Cattle were transported to a feedlot in KS and assigned to treatment group. Blood samples were collected at Day 0 (at sale barn), Day 1, Day 9, and Day 28 (at KS feedlot), and transported to the US Meat Animal Research Center in Clay Center, NE where plasma was harvested and stored at −80°C until assayed for the cytokines IFN-γ, IL-1β, IL-6, and TNF-α, and the acute stress protein haptoglobin (HPT). Our objectives were to determine if cytokine and haptoglobin profiles differed between control and metaphylaxis treatment groups over time, and if profiles differed between animals presenting with BRDC and those that remained healthy. There was no difference between the treated animals and their non-treated counterparts for any of the analytes measured. Sale barn of origin tended to affect TNF-α concentration. Differences for all analytes changed over days, and on specific days was associated with state of origin and treatment. The Treatment by Day by Case interaction was significant for HPT. The analyte most associated with BRDC was HPT on D9, possibly indicating that many of the cattle were not exposed to respiratory pathogens prior to entering the feedlot.
Collapse
Affiliation(s)
| | - Gary L Bennett
- USDA-ARS, US Meat Animal Research Center, Clay Center, NE, United States
| | - Larry A Kuehn
- USDA-ARS, US Meat Animal Research Center, Clay Center, NE, United States
| | - Keith D DeDonder
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Michael D Apley
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Gregory P Harhay
- USDA-ARS, US Meat Animal Research Center, Clay Center, NE, United States
| | - Michael L Clawson
- USDA-ARS, US Meat Animal Research Center, Clay Center, NE, United States
| | - Aspen M Workman
- USDA-ARS, US Meat Animal Research Center, Clay Center, NE, United States
| | - Bradley J White
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Robert L Larson
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Sarah F Capik
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Brian V Lubbers
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
3
|
Omontese BO, Caixeta LS, Machado VS, Rendahl A, Celestino MLK, Menta PR, Paiva D, Garcia-Muñoz A, Masic A. Effects of the Administration of a Non-specific Immune Stimulant Around Transportation on Health and Performance of Jersey and Jersey-Cross Heifer Calves During the Rearing Period: Randomized Clinical Trial. Front Vet Sci 2020; 7:550202. [PMID: 33173793 PMCID: PMC7591452 DOI: 10.3389/fvets.2020.550202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/09/2020] [Indexed: 01/07/2023] Open
Abstract
Our objective was to evaluate the effects of a non-specific immune stimulant (IS) administered around transportation on health scores (HS), average daily gain (ADG), disease treatment and mortality of Jersey and Jersey-cross calves during the rearing period. Newborn calves (4 d ± 1) were randomly allocated to receive either 1 mL of saline (CON; n = 438), 1 mL of IS before transport (BTIS; n = 431), or 1 mL of IS immediately after transport (ATIS; n = 436). Calves were health scored weekly for 3 weeks after transport. The data were analyzed using multivariable linear mixed models and multivariable logistic regression models. Kaplan-Meier survival analysis was performed for time to event analysis. Treatment, birth weight, breed, site of birth, serum total solids, dam parity, season of enrollment, and metaphylaxis were offered to models. Differences in respiratory and fecal HS, and ADG between treatment groups were not statistically significant. A total of 196 (15.0%) calves were treated at least once for any disease and 52 calves were treated multiple times. The proportion of calves treated for respiratory disease and/or diarrhea were 14.4, 14.4, and 16.2% for BTIS, ATIS and CON groups, respectively. Although the differences in the likelihood of treatment for both respiratory disease and/or diarrhea during the first 9 weeks of life was not statistically different between groups, we observed that more calves in the control group received disease treatments around 15 days of age compared with calves that received IS. The likelihood of treatment for respiratory diseases alone during the first 30 days of life was smaller in the calves that received IS before transportation when compared to the control group. Only 18 (1.4%) calves died within the study period. The calf mortality likelihood was not statistically different between study groups; however, fewer calves in the IS groups died when compared to CON. In conclusion, the use of IS around transportation did not influence weekly HS, ADG, and the number of disease treatments during the rearing period, but administering IS before transportation resulted in fewer treatments of respiratory diseases during the first 30 days post-transport and marginally lower mortality rates during the rearing period.
Collapse
Affiliation(s)
- Bobwealth O Omontese
- Department of Veterinary Population Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States.,Department of Food and Animal Sciences, College of Agricultural, Life and Natural Sciences, Alabama A and M University, Huntsville, AL, United States
| | - Luciano S Caixeta
- Department of Veterinary Population Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Vinicius S Machado
- Department of Veterinary Sciences, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, United States
| | - Aaron Rendahl
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Maria L K Celestino
- Department of Veterinary Sciences, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, United States
| | - Paulo R Menta
- Department of Veterinary Sciences, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, United States
| | - Daniela Paiva
- Department of Veterinary Population Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Angel Garcia-Muñoz
- Department of Veterinary Population Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States.,Faculty of Veterinary Sciences, University Cardenal Herrera CEU, CEU Universities, Valencia, Spain
| | | |
Collapse
|
4
|
Wheat W, Chow L, Rozo V, Herman J, Still Brooks K, Colbath A, Hunter R, Dow S. Non-specific protection from respiratory tract infections in cattle generated by intranasal administration of an innate immune stimulant. PLoS One 2020; 15:e0235422. [PMID: 32584899 PMCID: PMC7316291 DOI: 10.1371/journal.pone.0235422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Alternatives to antibiotics for prevention of respiratory tract infections in cattle are urgently needed given the increasing public and regulatory pressure to reduce overall antibiotic usage. Activation of local innate immune defenses in the upper respiratory tract is one strategy to induce non-specific protection against infection with the diverse array of viral and bacterial pathogens associated with bovine respiratory disease complex (BRDC), while avoiding the use of antibiotics. Our prior studies in rodent models demonstrated that intranasal administration of liposome-TLR complexes (LTC) as a non-specific immune stimulant generated high levels of protection against lethal bacterial and viral pathogens. Therefore, we conducted studies to assess LTC induction of local immune responses and protective immunity to BRDC in cattle. In vitro, LTC were shown to activate peripheral blood mononuclear cells in cattle, which was associated with secretion of INFγ and IL-6. Macrophage activation with LTC triggered intracellular killing of Mannheimia hemolytica and several other bacterial pathogens. In studies in cattle, intranasal administration of LTC demonstrated dose-dependent activation of local innate immune responses in the nasopharynx, including recruitment of monocytes and prolonged upregulation (at least 2 weeks) of innate immune cytokine gene expression by nasopharyngeal mucosal cells. In a BRDC challenge study, intranasal administration of LTC prior to pathogen exposure resulted in significant reduction in both clinical signs of infection and disease-associated euthanasia rates. These findings indicate that intranasal administration of a non-specific innate immune stimulant can be an effective method of rapidly generating generalized protection from mixed viral and bacterial respiratory tract infections in cattle.
Collapse
Affiliation(s)
- William Wheat
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Lyndah Chow
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Vanessa Rozo
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Julia Herman
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Kelly Still Brooks
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Aimee Colbath
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Randy Hunter
- Hunter Cattle Company, Wheatland, Wyoming, United States of America
| | - Steven Dow
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
5
|
Byrne KA, Loving CL, McGill JL. Innate Immunomodulation in Food Animals: Evidence for Trained Immunity? Front Immunol 2020; 11:1099. [PMID: 32582185 PMCID: PMC7291600 DOI: 10.3389/fimmu.2020.01099] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/06/2020] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial resistance (AMR) is a significant problem in health care, animal health, and food safety. To limit AMR, there is a need for alternatives to antibiotics to enhance disease resistance and support judicious antibiotic usage in animals and humans. Immunomodulation is a promising strategy to enhance disease resistance without antibiotics in food animals. One rapidly evolving field of immunomodulation is innate memory in which innate immune cells undergo epigenetic changes of chromatin remodeling and metabolic reprogramming upon a priming event that results in either enhanced or suppressed responsiveness to secondary stimuli (training or tolerance, respectively). Exposure to live agents such as bacille Calmette-Guerin (BCG) or microbe-derived products such as LPS or yeast cell wall ß-glucans can reprogram or "train" the innate immune system. Over the last decade, significant advancements increased our understanding of innate training in humans and rodent models, and strategies are being developed to specifically target or regulate innate memory. In veterinary species, the concept of enhancing the innate immune system is not new; however, there are few available studies which have purposefully investigated innate training as it has been defined in human literature. The development of targeted approaches to engage innate training in food animals, with the practical goal of enhancing the capacity to limit disease without the use of antibiotics, is an area which deserves attention. In this review, we provide an overview of innate immunomodulation and memory, and the mechanisms which regulate this long-term functional reprogramming in other animals (e.g., humans, rodents). We focus on studies describing innate training, or similar phenomenon (often referred to as heterologous or non-specific protection), in cattle, sheep, goats, swine, poultry, and fish species; and discuss the potential benefits and shortcomings of engaging innate training for enhancing disease resistance.
Collapse
Affiliation(s)
- Kristen A. Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, USDA, Ames, IA, United States
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, USDA, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
6
|
McGill JL, Sacco RE. The Immunology of Bovine Respiratory Disease: Recent Advancements. Vet Clin North Am Food Anim Pract 2020; 36:333-348. [PMID: 32327252 PMCID: PMC7170797 DOI: 10.1016/j.cvfa.2020.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, 1907 ISU C-Drive, VMRI Building 5, Ames, IA 50010, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Services, USDA, PO Box 70, 1920 Dayton Avenue, Ames, IA 50010, USA
| |
Collapse
|