1
|
Wu YW, Deng ZQ, Rong Y, Bu GW, Wu YK, Wu X, Cheng H, Fan HY. RNA surveillance by the RNA helicase MTR4 determines volume of mouse oocytes. Dev Cell 2025; 60:85-100.e4. [PMID: 39378876 DOI: 10.1016/j.devcel.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/21/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024]
Abstract
Oocytes are the largest cell type in multicellular animals. Here, we show that mRNA transporter 4 (MTR4) is indispensable for oocyte growth and functions as part of the RNA surveillance mechanism, which is responsible for nuclear waste RNA clearance. MTR4 ensures the normal post-transcriptional processing of maternal RNAs, their nuclear export to the cytoplasm, and the accumulation of properly processed transcripts. Oocytes with Mtr4 knockout fail to accumulate sufficient and normal transcripts in the cytoplasm and cannot grow to normal sizes. MTR4-dependent RNA surveillance has a previously unrecognized function in maintaining a stable nuclear environment for the establishment of non-canonical histone H3 lysine-4 trimethylation and chromatin reorganization, which is necessary to form a nucleolus-like structure in oocytes. In conclusion, MTR4-dependent RNA surveillance activity is a checkpoint that allows oocytes to grow to a normal size, undergo nuclear and cytoplasmic maturation, and acquire developmental competence.
Collapse
Affiliation(s)
- Yun-Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zuo-Qi Deng
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yan Rong
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Guo-Wei Bu
- Center for Biomedical Research, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Yu-Ke Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuan Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Center for Biomedical Research, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China.
| |
Collapse
|
2
|
Casali C, Galgano L, Zannino L, Siciliani S, Cavallo M, Mazzini G, Biggiogera M. Impact of heat and cold shock on epigenetics and chromatin structure. Eur J Cell Biol 2024; 103:151373. [PMID: 38016352 DOI: 10.1016/j.ejcb.2023.151373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Cells are continuously exposed to various sources of insults, among which temperature variations are extremely common. Epigenetic mechanisms, critical players in gene expression regulation, undergo alterations due to these stressors, potentially leading to health issues. Despite the significance of DNA methylation and histone modifications in gene expression regulation, their changes following heat and cold shock in human cells remain poorly understood. In this study, we investigated the epigenetic profiles of human cells subjected to hyperthermia and hypothermia, revealing significant variations. Heat shock primarily led to DNA methylation increments and epigenetic modifications associated with gene expression silencing. In contrast, cold shock presented a complex scenario, with both methylation and demethylation levels increasing, indicating different epigenetic responses to the opposite thermal stresses. These temperature-induced alterations in the epigenome, particularly their impact on chromatin structural organization, represent an understudied area that could offer important insights into genome function and potential prospects for therapeutic targets.
Collapse
Affiliation(s)
- Claudio Casali
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Luca Galgano
- Laboratory of Biochemistry, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Lorena Zannino
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Stella Siciliani
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Margherita Cavallo
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | | | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
3
|
Zannino L, Pagano A, Casali C, Oldani M, Balestrazzi A, Biggiogera M. Mercury chloride alters heterochromatin domain organization and nucleolar activity in mouse liver. Histochem Cell Biol 2023; 159:61-76. [PMID: 36136163 PMCID: PMC9899742 DOI: 10.1007/s00418-022-02151-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
Abstract
Mercury is a highly toxic element that induces severe alterations and a broad range of adverse effects on health. Its exposure is a global concern because it is widespread in the environment due to its multiple industrial, domestic, agricultural and medical usages. Among its various chemical forms, both humans and animals are mainly exposed to mercury chloride (HgCl2), methylmercury and elemental mercury. HgCl2 is metabolized primarily in the liver. We analysed the effects on the nuclear architecture of an increasing dosage of HgCl2 in mouse hepatocytes cell culture and in mouse liver, focusing specifically on the organization, on some epigenetic features of the heterochromatin domains and on the nucleolar morphology and activity. Through the combination of molecular and imaging approaches both at optical and electron microscopy, we show that mercury chloride induces modifications of the heterochromatin domains and a decrease of some histones post-translational modifications associated to heterochromatin. This is accompanied by an increase in nucleolar activity which is reflected by bigger nucleoli. We hypothesized that heterochromatin decondensation and nucleolar activation following mercury chloride exposure could be functional to express proteins necessary to counteract the harmful stimulus and reach a new equilibrium.
Collapse
Affiliation(s)
- Lorena Zannino
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, 27100 Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, 27100 Pavia, Italy
| | - Claudio Casali
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, 27100 Pavia, Italy
| | - Monica Oldani
- Department of Biology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, 27100 Pavia, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
4
|
Miyamoto K, Harata M. Nucleoskeleton proteins for nuclear dynamics. J Biochem 2021; 169:237-241. [PMID: 33479767 DOI: 10.1093/jb/mvab006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic nucleus shows organized structures of chromosomes, transcriptional components and their associated proteins. It has been believed that such a dense nuclear environment prevents the formation of a cytoskeleton-like network of protein filaments. However, accumulating evidence suggests that the cell nucleus also possesses structural filamentous components to support nuclear organization and compartments, which are referred to as nucleoskeleton proteins. Nucleoskeleton proteins including lamins and actin influence nuclear dynamics including transcriptional regulation, chromatin organization and DNA damage responses. Furthermore, these nucleoskeleton proteins play a pivotal role in cellular differentiation and animal development. In this commentary, we discuss how nucleoskeleton-based regulatory mechanisms orchestrate nuclear dynamics.
Collapse
Affiliation(s)
- Kei Miyamoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|