1
|
Fujii C, Zorumski CF, Izumi Y. Endoplasmic reticulum stress, autophagy, neuroinflammation, and sigma 1 receptors as contributors to depression and its treatment. Neural Regen Res 2024; 19:2202-2211. [PMID: 38488553 PMCID: PMC11034583 DOI: 10.4103/1673-5374.391334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 04/24/2024] Open
Abstract
The etiological factors contributing to depression and other neuropsychiatric disorders are largely undefined. Endoplasmic reticulum stress pathways and autophagy are well-defined mechanisms that play critical functions in recognizing and resolving cellular stress and are possible targets for the pathophysiology and treatment of psychiatric and neurologic illnesses. An increasing number of studies indicate the involvement of endoplasmic reticulum stress and autophagy in the control of neuroinflammation, a contributing factor to multiple neuropsychiatric illnesses. Initial inflammatory triggers induce endoplasmic reticulum stress, leading to neuroinflammatory responses. Subsequently, induction of autophagy by neurosteroids and other signaling pathways that converge on autophagy induction are thought to participate in resolving neuroinflammation. The aim of this review is to summarize our current understanding of the molecular mechanisms governing the induction of endoplasmic reticulum stress, autophagy, and neuroinflammation in the central nervous system. Studies focused on innate immune factors, including neurosteroids with anti-inflammatory roles will be reviewed. In the context of depression, animal models that led to our current understanding of molecular mechanisms underlying depression will be highlighted, including the roles of sigma 1 receptors and pharmacological agents that dampen endoplasmic reticulum stress and associated neuroinflammation.
Collapse
Affiliation(s)
- Chika Fujii
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Cao Y, Li H, Gao Y, Long J, Zheng L, Zhang Q, Li N, Chi X. Esketamine induces apoptosis of nasopharyngeal carcinoma cells through the PERK/CHOP pathway. Toxicol Appl Pharmacol 2024; 483:116800. [PMID: 38219984 DOI: 10.1016/j.taap.2023.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Nasopharyngeal carcinoma, a malignant tumor prevalent in southeast Asia and north Africa, still lacks effective treatment. Esketamine, an N-methyl-D-aspartatic acid (NMDA) receptor (NMDAR) antagonist, is widely used in clinical anesthesia. Emerging evidence suggests that esketamine plays an important role in inhibiting tumor cell activity. However, the underlying mechanisms of esketamine on nasopharyngeal carcinoma remain unknown. In this study, we found that esketamine inhibited the proliferation and migration of nasopharyngeal carcinoma cells. Mechanically, transcriptome sequencing and subsequent verification experiments revealed that esketamine promoted the apoptosis of nasopharyngeal carcinoma cells through endoplasmic reticulum stress PERK/ATF4/CHOP signaling pathway mediated by NMDAR. Additionally, when combined with esketamine, the inhibitory effect of cisplatin on the proliferation of nasopharyngeal carcinoma cells was significantly enhanced. These findings provide new insights into future anti-nasopharyngeal carcinoma clinical strategies via targeting the NMDAR/PERK/CHOP axis alone or in combination with cisplatin.
Collapse
Affiliation(s)
- Yuling Cao
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Huiting Li
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yunfei Gao
- Department of Otolaryngology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jiao Long
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lei Zheng
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Qi Zhang
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Xinjin Chi
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
3
|
Meerman JJ, Legler J, Piersma AH, Westerink RHS, Heusinkveld HJ. An adverse outcome pathway for chemical-induced Parkinson's disease: Calcium is key. Neurotoxicology 2023; 99:226-243. [PMID: 37926220 DOI: 10.1016/j.neuro.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Exposure to pesticides is associated with an increased risk of developing Parkinson's disease (PD). Currently, rodent-based risk assessment studies cannot adequately capture neurodegenerative effects of pesticides due to a lack of human-relevant endpoints targeted at neurodegeneration. Thus, there is a need for improvement of the risk assessment guidelines. Specifically, a mechanistic assessment strategy, based on human physiology and (patho)biology is needed, which can be applied in next generation risk assessment. The Adverse Outcome Pathway (AOP) framework is particularly well-suited to provide the mechanistic basis for such a strategy. Here, we conducted a semi-systematic review in Embase and MEDLINE, focused on neurodegeneration and pesticides, to develop an AOP network for parkinsonian motor symptoms. Articles were labelled and included/excluded using the online platform Sysrev. Only primary articles, written in English, focused on effects of pesticides or PD model compounds in models for the brain were included. A total of 66 articles, out of the 1700 screened, was included. PD symptoms are caused by loss of function and ultimately death of dopaminergic neurons in the substantia nigra (SN). Our literature review highlights that a unique feature of these cells that increases their vulnerability is their reliance on continuous low-level influx of calcium. As such, excess intracellular calcium was identified as a central early Key Event (KE). This KE can lead to death of dopaminergic neurons of the SN, and eventually parkinsonian motor symptoms, via four distinct pathways: 1) activation of calpains, 2) endoplasmic reticulum stress, 3) impairment of protein degradation, and 4) oxidative damage. Several receptors have been identified that may serve as molecular initiating events (MIEs) to trigger one or more of these pathways. The proposed AOP network provides the biological basis that can be used to develop a mechanistic testing strategy that captures neurodegenerative effects of pesticides.
Collapse
Affiliation(s)
- Julia J Meerman
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Juliette Legler
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Harm J Heusinkveld
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands.
| |
Collapse
|
4
|
Lee HJ, Yeom JW, Yun JH, Jang HB, Yoo M, Kim H, Koo SK, Lee H. Increased glutamate in type 2 diabetes in the Korean population is associated with increased plasminogen levels. J Diabetes 2023; 15:777-786. [PMID: 37314019 PMCID: PMC10509517 DOI: 10.1111/1753-0407.13429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/10/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Glutamate is a major neurotransmitter, although it causes cytotoxicity and inflammation in nonneuronal organs. This study aimed to investigate the metabolic disorders in which glutamate, associated with type 2 diabetes onset, is induced in the liver. METHODS An analysis of Korean community-based Ansan-Ansung cohort study data as well as functional research using in vitro and mouse models were performed. RESULTS Groups with high plasma glutamate levels (T2, T3) had a significantly increased risk of diabetes incidence after 8 years, compared to the group with relatively low glutamate levels (T1). Analysis of the effect of glutamate on diabetes onset in vitro showed that glutamate induces insulin resistance by increasing glucose-related protein 78 (GRP78) and phosphoenolpyruvate carboxykinase (PEPCK) expression in SK-Hep-1 human liver cells. In addition, three different genes, FRMB4B, PLG, and PARD3, were significantly associated with glutamate and were identified via genome-wide association studies. Among glutamate-related genes, plasminogen (PLG) levels were most significantly increased in several environments in which insulin resistance was induced, and was also upregulated by glutamate. Glutamate-induced increase in PLG in liver cells was caused by metabotropic glutamate receptor 5 activation, and PLG levels were also upregulated after extracellular secretion. Moreover, glutamate increased the expression of plasminogen activator inhibitor-1 (PAI-1). Thus, extracellular secreted PLG cannot be converted to plasmin (fibrinolytic enzyme) by increased PAI-1. CONCLUSIONS Increased glutamate is closely associated with the development of diabetes, and it may cause metabolic disorders by inhibiting the fibrinolytic system, which plays an important role in determining blood clots, a hallmark of diabetes.
Collapse
Affiliation(s)
- Hyo Jung Lee
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence ResearchKorea National Institute of Health, Korea Disease Control and Prevention AgencyCheongju‐siChungcheongbuk‐doKorea
| | - Jeong Won Yeom
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence ResearchKorea National Institute of Health, Korea Disease Control and Prevention AgencyCheongju‐siChungcheongbuk‐doKorea
| | - Ji Ho Yun
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence ResearchKorea National Institute of Health, Korea Disease Control and Prevention AgencyCheongju‐siChungcheongbuk‐doKorea
| | - Han Byul Jang
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence ResearchKorea National Institute of Health, Korea Disease Control and Prevention AgencyCheongju‐siChungcheongbuk‐doKorea
| | - Min‐Gyu Yoo
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence ResearchKorea National Institute of Health, Korea Disease Control and Prevention AgencyCheongju‐siChungcheongbuk‐doKorea
| | - Hyo‐Jin Kim
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence ResearchKorea National Institute of Health, Korea Disease Control and Prevention AgencyCheongju‐siChungcheongbuk‐doKorea
| | - Soo Kyung Koo
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence ResearchKorea National Institute of Health, Korea Disease Control and Prevention AgencyCheongju‐siChungcheongbuk‐doKorea
| | - Hye‐Ja Lee
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence ResearchKorea National Institute of Health, Korea Disease Control and Prevention AgencyCheongju‐siChungcheongbuk‐doKorea
| |
Collapse
|
5
|
Deutsch SI, Burket JA. From Mouse to Man: N-Methyl-d-Aspartic Acid Receptor Activation as a Promising Pharmacotherapeutic Strategy for Autism Spectrum Disorders. Med Clin North Am 2023; 107:101-117. [PMID: 36402493 DOI: 10.1016/j.mcna.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The BALB/c mouse displays hypersensitivity to behavioral effects of MK-801 (dizocilpine), a noncompetitive N-methyl-d-aspartic acid (NMDA) receptor "open-channel" blocker, and shows both no preference for an enclosed stimulus mouse over an inanimate object and reduced social interaction with a freely behaving stimulus mouse. NMDA receptor agonist interventions improved measures of social preference and social interaction of the BALB/c mouse model of autism spectrum disorder (ASD). A "proof of principle/proof of concept" translational 10-week clinical trial with 8-week of active medication administration was conducted comparing 20 DSM-IV-TR-diagnosed older adolescent/young adult patients with ASD randomized to once-weekly pulsed administration (50 mg/d) versus daily administration of d-cycloserine (50 mg/d). The results showed that d-cycloserine, a partial glycine agonist, was well tolerated, the 2 dosing strategies did not differ, and improvement was noted on the "lethargy/social withdrawal" and "stereotypic behavior" subscales of the Aberrant Behavior Checklist. NMDA receptor activation contributes to the regulation of mTOR signaling, a pathologic point of convergence in several monogenic syndromic forms of ASD. Furthermore, both NMDA receptor hypofunction and imbalance between NMDA receptor activation mediated by GluN2B and GluN2A-containing NMDA receptors occur as "downstream" consequences of several genetically unrelated abnormalities associated with ASD. NMDA receptor-subtype selective "positive allosteric modulators (PAMs)" are particularly appealing medication candidates for future translational trials.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, VA 23507, USA
| | - Jessica A Burket
- Department of Molecular Biology & Chemistry, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA 23606, USA.
| |
Collapse
|
6
|
Budgett RF, Bakker G, Sergeev E, Bennett KA, Bradley SJ. Targeting the Type 5 Metabotropic Glutamate Receptor: A Potential Therapeutic Strategy for Neurodegenerative Diseases? Front Pharmacol 2022; 13:893422. [PMID: 35645791 PMCID: PMC9130574 DOI: 10.3389/fphar.2022.893422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 01/13/2023] Open
Abstract
The type 5 metabotropic glutamate receptor, mGlu5, has been proposed as a potential therapeutic target for the treatment of several neurodegenerative diseases. In preclinical neurodegenerative disease models, novel allosteric modulators have been shown to improve cognitive performance and reduce disease-related pathology. A common pathological hallmark of neurodegenerative diseases is a chronic neuroinflammatory response, involving glial cells such as astrocytes and microglia. Since mGlu5 is expressed in astrocytes, targeting this receptor could provide a potential mechanism by which neuroinflammatory processes in neurodegenerative disease may be modulated. This review will discuss current evidence that highlights the potential of mGlu5 allosteric modulators to treat neurodegenerative diseases, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, this review will explore the role of mGlu5 in neuroinflammatory responses, and the potential for this G protein-coupled receptor to modulate neuroinflammation.
Collapse
Affiliation(s)
- Rebecca F Budgett
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | - Sophie J Bradley
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Sosei Heptares, Cambridge, United Kingdom
| |
Collapse
|