1
|
Singh P, Dhir YW, Gupta S, Kaushal A, Kala D, Nagraiik R, Kaushik NK, Noorani MS, Asif AR, Singh B, Aman S, Dhir S. Relevance of proteomics and metabolomics approaches to overview the tumorigenesis and better management of cancer. 3 Biotech 2025; 15:58. [PMID: 39949840 PMCID: PMC11813842 DOI: 10.1007/s13205-025-04222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Proteomics and metabolomics, integral combination of OMICs platform are gaining prominence in cancer research to enhance scientific knowledge of bio-molecular interactions occurs in the cellular processes during cancer progression. This approach designed to identify potential tools for addressing the complexities of this multifaceted disease. This analysis focussed on the intricate interplay between proteins and metabolites within cancer cells and their surrounding microenvironment. By reviewing current proteomics and metabolomics studies, we aim to gain invaluable insights into tumour biology, progression, and its implication in therapeutic responses. This study highlights the importance of proteomics and metabolomics in discovering therapeutic targets and diagnostic biomarkers for targeted cancer treatment. Proteomics facilitates the analysis of protein expression, modifications and interactions, exemplified by the identification of HER2 mutations leads to development of breast cancer hence targeted therapies like trastuzumab could be initiated. Metabolomics reveals metabolic alternations such as elevated 2-hydroxyglutarate levels in gliomas linked to cancer progression and treatment resistance. The integration of these approaches clarifies complex signalling network driving oncogenesis and paves the way for innovative cancer therapies, including immune cheque point inhibitors. Proteomics and metabolomics have revolutionised cancer biology by revealing intricate signalling networks, metabolic dysregulations, and unique molecular alterations. This information is crucial for early cancer identification and prognosis, and for designing personalized therapeutic strategies. Innovative technologies like artificial intelligence and high-throughput mass spectrometry further enhance the potential of these studies. Fostering multidisciplinary collaboration and data-sharing is essential for maximising the impact of these approaches to cure as well as better management of the cancer.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Bio-sciences & Technology, MMEC, Maharishi Markandeshwar, Deemed to Be University, Mullana, Ambala, Haryana 133207 India
| | - Yashika W. Dhir
- Department of Bio-sciences & Technology, MMEC, Maharishi Markandeshwar, Deemed to Be University, Mullana, Ambala, Haryana 133207 India
| | - Shagun Gupta
- Department of Bio-sciences & Technology, MMEC, Maharishi Markandeshwar, Deemed to Be University, Mullana, Ambala, Haryana 133207 India
| | - Ankur Kaushal
- Department of Bio-sciences & Technology, MMEC, Maharishi Markandeshwar, Deemed to Be University, Mullana, Ambala, Haryana 133207 India
| | - Deepak Kala
- NL-11 Centera Tetrahertz Laboratory, Institute of High-Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland
| | - Rupak Nagraiik
- Department of Biotechnology, Graphic Era, Deemed to Be University, Dehradun, Uttarakhand India 248002
| | - Naveen K. Kaushik
- Department of Industrial Biotechnology, College of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana India
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Tughlakabad, New Delhi 110062 India
| | - Abdul R. Asif
- Institute of Clinical Chemistry/UMG Laboratories, University Medical Center Goettingen, Robert Koch-Str.40, 37075 Goettingen, Germany
| | - Bharat Singh
- Department of Bio-sciences & Technology, MMEC, Maharishi Markandeshwar, Deemed to Be University, Mullana, Ambala, Haryana 133207 India
| | - Shahbaz Aman
- Department of Microbiology, MMIMSR, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana 133207 India
| | - Sunny Dhir
- Department of Bio-sciences & Technology, MMEC, Maharishi Markandeshwar, Deemed to Be University, Mullana, Ambala, Haryana 133207 India
| |
Collapse
|
2
|
Son A, Kim W, Park J, Park Y, Lee W, Lee S, Kim H. Mass Spectrometry Advancements and Applications for Biomarker Discovery, Diagnostic Innovations, and Personalized Medicine. Int J Mol Sci 2024; 25:9880. [PMID: 39337367 PMCID: PMC11432749 DOI: 10.3390/ijms25189880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Mass spectrometry (MS) has revolutionized clinical chemistry, offering unparalleled capabilities for biomolecule analysis. This review explores the growing significance of mass spectrometry (MS), particularly when coupled with liquid chromatography (LC), in identifying disease biomarkers and quantifying biomolecules for diagnostic and prognostic purposes. The unique advantages of MS in accurately identifying and quantifying diverse molecules have positioned it as a cornerstone in personalized-medicine advancement. MS-based technologies have transformed precision medicine, enabling a comprehensive understanding of disease mechanisms and patient-specific treatment responses. LC-MS has shown exceptional utility in analyzing complex biological matrices, while high-resolution MS has expanded analytical capabilities, allowing the detection of low-abundance molecules and the elucidation of complex biological pathways. The integration of MS with other techniques, such as ion mobility spectrometry, has opened new avenues for biomarker discovery and validation. As we progress toward precision medicine, MS-based technologies will be crucial in addressing the challenges of individualized patient care, driving innovations in disease diagnosis, prognosis, and treatment strategies.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, San Diego, CA 92037, USA
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yongho Park
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sangwoon Lee
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Ji G, Xiong Y, Li Y, Yan G, Yao J, Fang C, Lu H. Global analysis of N-myristoylation and its heterogeneity by combining N-terminomics and nanographite fluoride-based solid-phase extraction. Talanta 2024; 276:126300. [PMID: 38795647 DOI: 10.1016/j.talanta.2024.126300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
N-myristoylation is one of the most widespread and important lipidation in eukaryotes and some prokaryotes, which is formed by covalently attaching various fatty acids (predominantly myristic acid C14:0) to the N-terminal glycine of proteins. Disorder of N-myristoylation is critically implicated in numerous physiological and pathological processes. Here, we presented a method for purification and comprehensive characterization of endogenous, intact N-glycine lipid-acylated peptides, which combined the negative selection method for N-terminome and the nanographite fluoride-based solid-phase extraction method (NeS-nGF SPE). After optimizing experimental conditions, we conducted the first global profiling of the endogenous and heterogeneous modification states for N-terminal glycine, pinpointing the precise sites and their associated lipid moieties. Totally, we obtained 76 N-glycine lipid-acylated peptides, including 51 peptides with myristate (C14:0), 10 with myristoleate (C14:1), 6 with tetradecadienoicate (C14:2), 5 with laurate (C12:0) and 4 with lauroleate (C12:1). Therefore, our proteomic methodology could significantly facilitate precise and in-depth analysis of the endogenous N-myristoylome and its heterogeneity.
Collapse
Affiliation(s)
- Guanghui Ji
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, PR China
| | - Yingying Xiong
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, PR China
| | - Yueyue Li
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, PR China
| | - Guoquan Yan
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, PR China
| | - Jun Yao
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, PR China
| | - Caiyun Fang
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, PR China.
| | - Haojie Lu
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, PR China; Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
4
|
Samgina TY, Vasileva ID, Zubarev RA, Lebedev AT. EThcD as a Unique Tool for the Top-Down De Novo Sequencing of Intact Natural Ranid Amphibian Peptides. Anal Chem 2024; 96:12057-12064. [PMID: 38979842 DOI: 10.1021/acs.analchem.4c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
De novo sequencing of any novel peptide/protein is a difficult task. Full sequence coverage, isomeric amino acid residues, inter- and intramolecular S-S bonds, and numerous other post-translational modifications make the investigators employ various chemical modifications, providing a variety of specific fragmentation MSn patterns. The chemical processes are time-consuming, and their yields never reach 100%, while the subsequent purification often leads to the loss of minor components of the initial peptide mixture. Here, we present the advantages of the EThcD method that enables establishing the full sequence of natural intact peptides of ranid frogs in de novo top-down mode without any chemical modifications. The method provides complete sequence coverage, including the cyclic disulfide section, and reliable identification of isomeric leucine/isoleucine residues. The proposed approach demonstrated its efficiency in the analysis of peptidomes of ranid frogs from several populations of Rana arvalis, Rana temporaria, and Pelophylax esculentus complexes.
Collapse
Affiliation(s)
- Tatiana Yu Samgina
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina D Vasileva
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roman A Zubarev
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, Stockholm 17177, Sweden
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Albert T Lebedev
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
5
|
Banahene N, Peters-Clarke TM, Biegas KJ, Shishkova E, Hart EM, McKitterick AC, Kambitsis NH, Johnson UG, Bernhardt TG, Coon JJ, Swarts BM. Chemical Proteomics Strategies for Analyzing Protein Lipidation Reveal the Bacterial O-Mycoloylome. J Am Chem Soc 2024; 146:12138-12154. [PMID: 38635392 PMCID: PMC11066868 DOI: 10.1021/jacs.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein O-fatty acylation in Corynebacterium, termed protein O-mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein O-mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides. To facilitate the analysis of protein lipidation and enable the comprehensive profiling and site mapping of protein O-mycoloylation, we developed a chemical proteomics strategy integrating metabolic labeling, click chemistry, cleavable linkers, and a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing LC separation and complementary fragmentation methods tailored to the analysis of lipophilic, MS-labile O-acylated peptides. Using these tools in the model organism Corynebacterium glutamicum, we identified approximately 30 candidate O-mycoloylated proteins, including porins, mycoloyltransferases, secreted hydrolases, and other proteins with cell envelope-related functions─consistent with a role for O-mycoloylation in targeting proteins to the mycomembrane. Site mapping revealed that many of the proteins contained multiple spatially proximal modification sites, which occurred predominantly at serine residues surrounded by conformationally flexible peptide motifs. Overall, this study (i) discloses the putative protein O-mycoloylome for the first time, (ii) yields new insights into the undercharacterized proteome of the mycomembrane, which is a hallmark of important pathogens (e.g., Corynebacterium diphtheriae, Mycobacterium tuberculosis), and (iii) provides generally applicable chemical strategies for the proteomic analysis of protein lipidation.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Trenton M. Peters-Clarke
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53562, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
| | - Kyle J. Biegas
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Evgenia Shishkova
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
| | - Elizabeth M. Hart
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Amelia C. McKitterick
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Nikolas H. Kambitsis
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Ulysses G. Johnson
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Thomas G. Bernhardt
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53562, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53562, United States
| | - Benjamin M. Swarts
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| |
Collapse
|