1
|
Duan HY, Cao JX, Qi JJ, Wu GS, Li SY, An GS, Jia HT, Cai WW, Ni JH. E2F1 enhances 8-chloro-adenosine-induced G2/M arrest and apoptosis in A549 and H1299 lung cancer cells. BIOCHEMISTRY (MOSCOW) 2013; 77:261-9. [PMID: 22803943 DOI: 10.1134/s0006297912030042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The E2F1 transcription factor is a well known regulator of cell proliferation and apoptosis, but its role in response to DNA damage is less clear. 8-Chloro-adenosine (8-Cl-Ado), a nucleoside analog, can inhibit proliferation in a variety of human tumor cells. However, it is still elusive how the agent acts on tumors. Here we show that A549 and H1299 cells formed DNA double-strand breaks after 8-Cl-Ado exposure, accompanied by E2F1 upregulation at protein level. Overexpressed wild-type (E2F1-wt) colocalized with double-strand break marker γ-H2AX and promoted G2/M arrest in 8-Cl-Ado-exposed A549 and H1299, while expressed S31A mutant of E2F1 (E2F1-mu) significantly reduced ability to accumulate at sites of DNA damage and G2/M arrest, suggesting that E2F1 is required for activating G2/M checkpoint pathway upon DNA damage. Transfection of either E2F1-wt or E2F1-mu plasmid promoted apoptosis in 8-Cl-Ado-exposed cells, indicating that 8-Cl-Ado may induce apoptosis in E2F1-dependent and E2F1-independent ways. These findings demonstrate that E2F1 plays a crucial role in 8-Cl-Ado-induced G2/M arrest but is dispensable for 8-Cl-Ado-induced apoptosis. These data also suggest that the mechanism of 8-Cl-Ado action is complicated.
Collapse
Affiliation(s)
- Hong-Ying Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Yuen HF, McCrudden CM, Chan KK, Chan YP, Wong MLY, Chan KYK, Khoo US, Law S, Srivastava G, Lappin TR, Chan KW, El-Tanani M. The role of Pea3 group transcription factors in esophageal squamous cell carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:992-1003. [PMID: 21689625 PMCID: PMC3157177 DOI: 10.1016/j.ajpath.2011.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 03/11/2011] [Accepted: 04/05/2011] [Indexed: 01/26/2023]
Abstract
The transcription factors Pea3, Erm, and Er81 can promote cancer initiation and progression in various types of solid tumors. However, their role in esophageal squamous cell carcinoma (ESCC) has not been elucidated. In this study, we found that the expression levels of Pea3 and Erm, but not that of Er81, were significantly higher in ESCC compared with nontumor esophageal epithelium. A high level of Pea3 expression was significantly correlated with a shorter overall survival in a cohort of 81 patients with ESCC and the subgroup with N1 stage tumor (Wilcoxon-Gehan test, P = 0.016 and P = 0.001, respectively). Pea3 was overexpressed in seven ESCC cell lines compared with two immortalized esophageal cell lines. Pea3 knockdown reduced cell proliferation and suppressed nonadherent growth, migration, and invasion in ESCC cells in vitro. In addition, Pea3 knockdown in ESCC cells resulted in a down-regulation of phospho-Akt and matrix metalloproteinase 13, whereas a significant positive correlation in the expression levels was observed between Pea3 and phospho-Akt (r = 0.281, P < 0.013) and between Pea3 and matrix metalloproteinase 13 in the human specimens (r = 0.462, P < 0.001). Moreover, Pea3 modulated the sensitivity of EC109 cells to doxorubicin, probably via reduced activity of the phosphatidylinositol 3-kinase-Akt-mammalian target of Rapamycin complex 1 pathway on Pea3 knockdown. In conclusion, our results suggest that Pea3 plays an important role in the progression of ESCC.
Collapse
Affiliation(s)
- Hiu-Fung Yuen
- Center for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Cian M. McCrudden
- Center for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Ka-Kui Chan
- Center for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Yuen-Piu Chan
- Department of Pathology, University of Hong Kong, Hong Kong, China
| | | | | | - Ui-Soon Khoo
- Department of Pathology, University of Hong Kong, Hong Kong, China
| | - Simon Law
- Department of Surgery, University of Hong Kong, Hong Kong, China
| | | | - Terence R. Lappin
- Center for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Kwok-Wah Chan
- Department of Pathology, University of Hong Kong, Hong Kong, China
| | - Mohamed El-Tanani
- Center for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| |
Collapse
|
3
|
Zhou F, Cui C, Ge Y, Chen H, Li Q, Yang Z, Wu G, Sun S, Chen K, Gu J, Jiang J, Wei Y. Alpha2,3-Sialylation regulates the stability of stem cell marker CD133. J Biochem 2010; 148:273-80. [PMID: 20551139 DOI: 10.1093/jb/mvq062] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
CD133 is widely used as a marker for the isolation and characterization of normal and cancer stem cells. The dynamic alternation of CD133 glycosylation contributes to the isolation of normal and cancer stem cells, and is supposed to be associated with cell differentiation. Although CD133 has been identified as a N-glycosylated protein, the specific glycosylation status of CD133 remain unclear. Here, we found that CD133 could be sialylated in neural stem cells and glioma-initiating cells, and the sialyl residues attach to CD133 N-glycan terminal via alpha2,3-linkage. Furthermore, desialylation of CD133 by neuraminidase specifically accelerates its degradation in lysosomes-dependent pathway. Taken together, our results characterized CD133 as an alpha2,3-sialylated glycoprotein and revealed that the sialylation modification contributes to the stability of CD133 protein, providing clues to understanding the function of CD133 molecular and to understanding the utility of glycosylated CD133 epitopes in defining neural stem cells and tumour-initiating cells.
Collapse
Affiliation(s)
- Fengbiao Zhou
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai, 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Extracellular signal-regulated kinase mitogen-activated protein kinase signaling initiates a dynamic interplay between sumoylation and ubiquitination to regulate the activity of the transcriptional activator PEA3. Mol Cell Biol 2009; 29:3204-18. [PMID: 19307308 DOI: 10.1128/mcb.01128-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many transcription factors are controlled through SUMO modification, and in the majority of cases this modification results in enhancements in their repressive properties. In some instances, SUMO modification and its associated repressive activities can be reversed by the action of intracellular signaling pathways, leading to enhanced transcriptional capacities of transcription factors. Here we have investigated sumoylation of the ETS domain transcription factor PEA3 and its interplay with the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase signaling pathway. PEA3 is modified by SUMO in vitro and in vivo on multiple sites in its N-terminal region. Activation of the ERK MAP kinase pathway promotes sumoylation of PEA3. Importantly, sumoylation of PEA3 is required for maximal activation of target gene promoters, including MMP-1 and COX-2. Molecularly, sumoylation is selectively required for synergistic activation of target gene expression with the coactivator CBP. Moreover, sumoylation of PEA3 is required for ubiquitination of PEA3 and promotes its degradation, suggesting that SUMO-mediated recycling of PEA3 plays a role in PEA3-mediated promoter activation. Thus, in contrast to the majority of other transcription factors studied, sumoylation of PEA3 plays a positive role in PEA3-mediated transcriptional activation and the ERK MAP kinase pathway cooperates with rather than antagonizes this process.
Collapse
|