1
|
Sarvestani ST, Cotton B, Fritzlar S, O'Donnell TB, Mackenzie JM. Norovirus Infection: Replication, Manipulation of Host, and Interaction with the Host Immune Response. J Interferon Cytokine Res 2016; 36:215-25. [PMID: 27046239 DOI: 10.1089/jir.2015.0124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Noroviruses (NoVs) belong to the Caliciviridae family of viruses and are responsible for causing the majority of gastroenteritis outbreaks worldwide. In the past decade, research on NoV biology has intensified because of the discovery of murine NoV and subsequently the first cell culture system and small animal model for NoV replication and pathogenesis. In this review, we discuss the current literature on NoV biology, focusing particularly on NoV replication and the interaction between NoV and the host immune response. Understanding the NoV replication cycle and its interaction with cellular processes and innate immune immunity will help develop molecular targets to control human NoV infection and prevent outbreaks. In addition to the innate immune response, we have documented the current efforts to develop NoV vaccines to control outbreaks.
Collapse
Affiliation(s)
- Soroush T Sarvestani
- 1 Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, Australia
| | - Ben Cotton
- 1 Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, Australia .,2 Department of Microbiology, La Trobe University , Melbourne, Australia
| | - Svenja Fritzlar
- 1 Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, Australia
| | - Tanya B O'Donnell
- 1 Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, Australia
| | - Jason M Mackenzie
- 1 Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, Australia
| |
Collapse
|
2
|
Herod M, Prince C, Skilton R, Ward V, Cooper J, Clarke I. Structure-based design and functional studies of novel noroviral 3C protease chimaeras offer insights into substrate specificity. Biochem J 2014; 464:461-72. [PMID: 25275273 PMCID: PMC4613530 DOI: 10.1042/bj20140959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 01/30/2023]
Abstract
The norovirus NS6 protease is a key target for anti-viral drug development. Noroviruses encode a 2200 amino acid polyprotein which is cleaved by this critical protease at five defined boundary substrates into six mature non-structural (NS) proteins. Studies of the human norovirus (HNV) NS6 protease, in the context of a full ORF1 polyprotein, have been severely hampered because HNVs are not culturable. Thus, investigations into the HNV NS6 protease have been largely restricted to in vitro assays using Escherichia coli-expressed, purified enzyme. The NS6 protease is formed of two distinct domains joined by a linking loop. Structural data suggest that domain 2 of the protease possesses substantial substrate binding pockets which form the bulk of the interactions with the NS boundaries and largely dictate boundary specificity and cleavage. We have constructed chimaeric murine norovirus (MNV) genomes carrying individual domains from the HNV protease and demonstrated by cell transfection that chimaeric HNV proteases have functional activity in the context of the full-length ORF1 polyprotein. Although domain 2 primarily confers boundary specificity, our data suggest that an inter-domain interaction exists within HNV NS6 protease which influences cleavage of specific substrates. The present study also shows that chimaeric MNVs provide improved models for studying HNV protein function in the context of a full ORF1 polyprotein.
Collapse
Affiliation(s)
- Morgan R. Herod
- Molecular Microbiology Group, University of Southampton, Southampton SO16 6YD, U.K
| | - Cynthia A. Prince
- Molecular Microbiology Group, University of Southampton, Southampton SO16 6YD, U.K
| | - Rachel J. Skilton
- Molecular Microbiology Group, University of Southampton, Southampton SO16 6YD, U.K
| | - Vernon K. Ward
- Otago School of Medical Sciences, Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Jonathan B. Cooper
- Laboratory for Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, U.K
| | - Ian N. Clarke
- Molecular Microbiology Group, University of Southampton, Southampton SO16 6YD, U.K
| |
Collapse
|
3
|
Abstract
Noroviruses are small, positive-sense RNA viruses within the family Caliciviridae, and are now accepted widely as a major cause of acute gastroenteritis in both developed and developing countries. Despite their impact, our understanding of the life cycle of noroviruses has lagged behind that of other RNA viruses due to the inability to culture human noroviruses (HuNVs). Our knowledge of norovirus biology has improved significantly over the past decade as a result of numerous technological advances. The use of a HuNV replicon, improved biochemical and cell-based assays, combined with the discovery of a murine norovirus capable of replication in cell culture, has improved greatly our understanding of the molecular mechanisms of norovirus genome translation and replication, as well as the interaction with host cell processes. In this review, the current state of knowledge of the intracellular life of noroviruses is discussed with particular emphasis on the mechanisms of viral gene expression and viral genome replication.
Collapse
Affiliation(s)
- Lucy G Thorne
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
4
|
Viswanathan P, May J, Uhm S, Yon C, Korba B. RNA binding by human Norovirus 3C-like proteases inhibits protease activity. Virology 2013; 438:20-7. [PMID: 23399036 DOI: 10.1016/j.virol.2013.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/20/2012] [Accepted: 01/11/2013] [Indexed: 11/28/2022]
Abstract
A highly active, fluorescence-based, in vitro assay for human Norovirus protease from genogroup I and II viruses was optimized utilizing as little as 0.25μM enzyme, pH 7.6, and substrate:enzyme of 50-100. Activity in Tris-HCl or sodium phosphate buffers was 2-fold less than HEPES, and 2-fold lower for buffer concentrations over 10mM. Protease activity at pH 7.6 was 73% (GI) or 63% (GII) of activity at the optimal pH 9.0. Sodium inhibited activity 2-3 fold, while potassium, calcium, magnesium, and manganese inhibited 5-10 fold. Differences in efficiency due to pH, buffer, and cations were due to changes in kcat and not Km. Norovirus protease bound short RNAs representing the 3' or 5' ends of the virus, inhibiting protease activity (IC50 3-5μM) in a non-competitive manner. Previous reports indicated participation of the protease in the Norovirus replicase complex. The current studies provide initial support for a defined role for the viral protease in Norovirus replication.
Collapse
Affiliation(s)
- Prasanth Viswanathan
- Georgetown University Medical Center, Department of Microbiology and Immunology, 3900 Reservoir Rd., N.W., Med-Dent Building, RM SW319, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
Human noroviruses (HuNoV) are a major cause of nonbacterial gastroenteritis worldwide, yet details of the life cycle and replication of HuNoV are relatively unknown due to the lack of an efficient cell culture system. Studies with murine norovirus (MNV), which can be propagated in permissive cells, have begun to probe different aspects of the norovirus life cycle; however, our understanding of the specific functions of the viral proteins lags far behind that of other RNA viruses. Genome-wide functional profiling by insertional mutagenesis can reveal protein domains essential for replication and can lead to generation of tagged viruses, which has not yet been achieved for noroviruses. Here, transposon-mediated insertional mutagenesis was used to create 5 libraries of mutagenized MNV infectious clones, each containing a 15-nucleotide sequence randomly inserted within a defined region of the genome. Infectious virus was recovered from each library and was subsequently passaged in cell culture to determine the effect of each insertion by insertion-specific fluorescent PCR profiling. Genome-wide profiling of over 2,000 insertions revealed essential protein domains and confirmed known functional motifs. As validation, several insertion sites were introduced into a wild-type clone, successfully allowing the recovery of infectious virus. Screening of a number of reporter proteins and epitope tags led to the generation of the first infectious epitope-tagged noroviruses carrying the FLAG epitope tag in either NS4 or VP2. Subsequent work confirmed that epitope-tagged fully infectious noroviruses may be of use in the dissection of the molecular interactions that occur within the viral replication complex.
Collapse
|
6
|
Chang KO, Takahashi D, Prakash O, Kim Y. Characterization and inhibition of norovirus proteases of genogroups I and II using a fluorescence resonance energy transfer assay. Virology 2012; 423:125-33. [PMID: 22200497 PMCID: PMC3259199 DOI: 10.1016/j.virol.2011.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/26/2011] [Accepted: 12/01/2011] [Indexed: 01/08/2023]
Abstract
Noroviruses are the major cause of food- or water-borne gastroenteritis outbreaks in humans. The norovirus protease that cleaves a large viral polyprotein to nonstructural proteins is essential for virus replication and an attractive target for antiviral drug development. Noroviruses show high genetic diversity with at least five genogroups, GI-GV, of which GI and GII are responsible for the majority of norovirus infections in humans. We cloned and expressed proteases of Norwalk virus (GI) and MD145 virus (GII) and characterized the enzymatic activities with fluorescence resonance energy transfer substrates. We demonstrated that the GI and GII proteases cleaved the substrates derived from the naturally occurring cleavage site in the open reading frame (ORF) 1 of G1 norovirus with similar efficiency, and that enzymatic activity of both proteases was inhibited by commercial protease inhibitors including chymostatin. The interaction of chymostatin to Norwalk virus protease was validated by nuclear magnetic resonance (NMR) spectroscopy.
Collapse
Affiliation(s)
- Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, KS 66506, USA
| | - Daisuke Takahashi
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Om Prakash
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, KS 66506, USA,Corresponding author at: Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA. Fax: + 1 785 532 4039
| |
Collapse
|
7
|
Someya Y. From head to toe of the norovirus 3C-like protease. Biomol Concepts 2012; 3:41-56. [DOI: 10.1515/bmc.2011.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/02/2011] [Indexed: 01/25/2023] Open
Abstract
AbstractNoroviruses are major causative agents of viral gastroenteritis in humans. Currently, there are no therapeutic medications to treat noroviral infections, nor are there effective vaccines against these pathogens. The viral 3C-like protease is solely responsible for the maturation of viral protein components. The crystal structures of the proteases were resolved at high atomic resolution. The protease was also explored by means of mutagenesis. These studies revealed the active-site amino acid residues and factors determining and affecting substrate specificity as well as the principle of architecting the protease molecule. The possible mechanism of proteolysis was also suggested. Consideration of the data accumulated thus far will be useful for development of therapeutic drugs targeting the viral protease.
Collapse
Affiliation(s)
- Yuichi Someya
- 1Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| |
Collapse
|
8
|
Someya Y, Takeda N. Functional consequences of mutational analysis of norovirus protease. FEBS Lett 2010; 585:369-74. [PMID: 21168409 DOI: 10.1016/j.febslet.2010.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 12/09/2010] [Accepted: 12/14/2010] [Indexed: 11/26/2022]
Abstract
Norovirus protease has been subjected to an extensive mutagenesis study. Ala-scanning mutation at 13 different positions (Trp6, Trp19, Thr27, Leu86, Leu95, Leu97, Met101, Gln117, Leu121, Thr134, Tyr143, Val144, and Val167) led to loss of function and/or stability. Considering the crystal structure of the protease, it was revealed that a hydroxyl group of Thr134 and an aromatic ring of Tyr143 were important for substrate recognition along with His157. It was notable that several of the residues identified were in close proximity to each other, suggesting their importance for the integrity and stability of the protease.
Collapse
Affiliation(s)
- Yuichi Someya
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.
| | | |
Collapse
|
9
|
Someya Y, Takeda N. Insights into the enzyme-substrate interaction in the norovirus 3C-like protease. J Biochem 2009; 146:509-21. [PMID: 19556225 DOI: 10.1093/jb/mvp094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Glu54 residue of the norovirus 3C-like protease was implicated in proteolysis as a third-member carboxylate of the catalytic triad. The E54L mutant protease cleaved the sequence (133)LSFE/AP between the 3B and 3C regions of norovirus polyprotein, but did not cleave the sequence (198)ATSE/GK between the 3A and 3B. The 3BC junction mutation (3B-L133A or 3B-F135S) hampered the cleavage by the E54L protease, whereas the 3AB junction mutation (3A-A198L, S200F) allowed the E54L protease to digest. These results indicate that the E54L mutant protease is a substrate-specificity mutant and requires large hydrophobic amino acid residues at both P4 and P2 positions of the substrate. It was notable that the 3A-S200F P2 position mutation caused tight interaction between the wild-type protease and the C-terminus of the 3A protein, hence a decreased release rate of the product from the enzyme. This tight binding was dependent on the hydrophobicity of amino acid residues introduced at position 200 of the 3A region and was affected by the mutation in the bII-cII loop of the protease or the mutation of position 198 of 3A corresponding to the P4 position of the substrate. These results suggest that the protease and the substrate sense each other in the process of the proteolysis, being supported by crystal structures.
Collapse
Affiliation(s)
- Yuichi Someya
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| | | |
Collapse
|