1
|
Chiu YL, Wu YY, Barndt RB, Lin YW, Sytwo HP, Cheng A, Yang K, Chan KS, Wang JK, Johnson MD, Lin CY. Differential subcellular distribution renders HAI-2 a less effective protease inhibitor than HAI-1 in the control of extracellular matriptase proteolytic activity. Genes Dis 2020; 9:1049-1061. [PMID: 35685459 PMCID: PMC9170578 DOI: 10.1016/j.gendis.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/02/2020] [Indexed: 01/09/2023] Open
|
2
|
Pawar NR, Buzza MS, Antalis TM. Membrane-Anchored Serine Proteases and Protease-Activated Receptor-2-Mediated Signaling: Co-Conspirators in Cancer Progression. Cancer Res 2019; 79:301-310. [PMID: 30610085 DOI: 10.1158/0008-5472.can-18-1745] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/12/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Pericellular proteolysis provides a significant advantage to developing tumors through the ability to remodel the extracellular matrix, promote cell invasion and migration, and facilitate angiogenesis. Recent advances demonstrate that pericellular proteases can also communicate directly to cells by activation of a unique group of transmembrane G-protein-coupled receptors (GPCR) known as protease-activated receptors (PAR). In this review, we discuss the specific roles of one of four mammalian PARs, namely PAR-2, which is overexpressed in advanced stage tumors and is activated by trypsin-like serine proteases that are highly expressed or otherwise dysregulated in many cancers. We highlight recent insights into the ability of different protease agonists to bias PAR-2 signaling and the newly emerging evidence for an interplay between PAR-2 and membrane-anchored serine proteases, which may co-conspire to promote tumor progression and metastasis. Interfering with these pathways might provide unique opportunities for the development of new mechanism-based strategies for the treatment of advanced and metastatic cancers.
Collapse
Affiliation(s)
- Nisha R Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marguerite S Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Toni M Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland. .,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Liu M, Yuan C, Jensen JK, Zhao B, Jiang Y, Jiang L, Huang M. The crystal structure of a multidomain protease inhibitor (HAI-1) reveals the mechanism of its auto-inhibition. J Biol Chem 2017; 292:8412-8423. [PMID: 28348076 DOI: 10.1074/jbc.m117.779256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/16/2017] [Indexed: 01/23/2023] Open
Abstract
Hepatocyte growth factor activator inhibitor 1 (HAI-1) is a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development and is also important in maintaining postnatal homeostasis in many tissues. HAI-1 is a Kunitz-type serine protease inhibitor, and soluble fragments of HAI-1 with variable lengths have been identified in vivo The full-length extracellular portion of HAI-1 (sHAI-1) shows weaker inhibitory activity toward target proteases than the smaller fragments, suggesting auto-inhibition of HAI-1. However, this possible regulatory mechanism has not yet been evaluated. Here, we solved the crystal structure of sHAI-1 and determined the solution structure by small-angle X-ray scattering. These structural analyses revealed that, despite the presence of long linkers, sHAI-1 exists in a compact conformation in which sHAI-1 active sites in Kunitz domain 1 are sterically blocked by neighboring structural elements. We also found that in the presence of target proteases, sHAI-1 adopts an extended conformation that disables the auto-inhibition effect. Our results also reveal the roles of non-inhibitory domains of this multidomain protein and explain the low activity of the full-length protein. The structural insights gained here improve our understanding of the regulation of HAI-1 inhibitory activities and point to new approaches for better controlling these activities.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cai Yuan
- College of Bioscience and Biotechnology, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Baoyu Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yunbin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longguang Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
4
|
|
5
|
Mochida S, Tsuzuki S, Inouye K, Fushiki T. A recombinant catalytic domain of matriptase induces detachment and apoptosis of small-intestinal epithelial IEC-6 cells cultured on laminin-coated surface. J Biochem 2010; 148:721-32. [PMID: 20855298 DOI: 10.1093/jb/mvq108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Matriptase is a type-II transmembrane serine protease that is expressed strongly in the epithelial elements of various organs. In the small intestine, it is expressed prominently at the villus tip where aged epithelial cells undergo shedding and/or apoptosis. This observation, together with the ability of matriptase to cleave laminin (a basement membrane component critical for epithelial cell attachment), prompted us to hypothesize that it plays an important part in the removal of aged epithelial cells in the small intestine. We tested this hypothesis by determining whether a recombinant catalytic domain of rat matriptase (His(6)t-S-CD) causes detachment and/or apoptosis of small-intestinal epithelial IEC-6 cells. His(6)t-S-CD caused detachment of cells attached to laminin-coated plates but did not detach cells attached to fibronectin- or type-IV collagen-coated plates. Pre-treatment of laminin-coated plates with His(6)t-S-CD decreased the attachment of cells, suggesting that the recombinant matriptase caused detachment through a mechanism involving a direct effect on laminin. His(6)t-S-CD was also found to induce apoptosis in the cells cultured on laminin-coated plates, as assessed by annexin-V staining, DNA fragmentation and caspase-3 activity assays. These findings support our hypothesis regarding the role of matriptase in the small intestine.
Collapse
Affiliation(s)
- Seiya Mochida
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
6
|
Inouye K, Tsuzuki S, Yasumoto M, Kojima K, Mochida S, Fushiki T. Identification of the matriptase second CUB domain as the secondary site for interaction with hepatocyte growth factor activator inhibitor type-1. J Biol Chem 2010; 285:33394-33403. [PMID: 20682770 DOI: 10.1074/jbc.m110.115816] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Matriptase is a type II transmembrane serine protease comprising 855 amino acid residues. The extracellular region of matriptase comprises a noncatalytic stem domain (containing two tandem repeats of complement proteases C1r/C1s-urchin embryonic growth factor-bone morphogenetic protein (CUB) domain) and a catalytic serine protease domain. The stem domain of matriptase contains site(s) for facilitating the interaction of this protease with the endogenous inhibitor, hepatocyte growth factor activator inhibitor type-1 (HAI-1). The present study aimed to identify these site(s). Analyses using a secreted variant of recombinant matriptase comprising the entire extracellular domain (MAT), its truncated variants, and a recombinant HAI-1 variant with an entire extracellular domain (HAI-1-58K) revealed that the second CUB domain (CUB domain II, Cys(340)-Pro(452)) likely contains the site(s) of interest. We also found that MAT undergoes cleavage between Lys(379) and Val(380) within CUB domain II and that the C-terminal residues after Val(380) are responsible for facilitating the interaction with HAI-1-58K. A synthetic peptide corresponding to Val(380)-Asp(390) markedly increased the matriptase-inhibiting activity of HAI-1-58K, whereas the peptides corresponding to Val(380)-Val(389) and Phe(382)-Asp(390) had no effect. HAI-1-58K precipitated with immobilized streptavidin resins to which a synthetic peptide Val(380)-Pro(392) with a biotinylated lysine residue at its C terminus was bound, suggesting direct interaction between CUB domain II and HAI-1. These results led to the identification of the matriptase CUB domain II, which facilitates the primary inhibitory interaction between this protease and HAI-1.
Collapse
Affiliation(s)
- Kuniyo Inouye
- From the Laboratory of Enzyme Chemistry, Sakyo-ku, Kyoto City 606-8502, Japan.
| | - Satoshi Tsuzuki
- Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto City 606-8502, Japan
| | - Makoto Yasumoto
- From the Laboratory of Enzyme Chemistry, Sakyo-ku, Kyoto City 606-8502, Japan
| | - Kenji Kojima
- From the Laboratory of Enzyme Chemistry, Sakyo-ku, Kyoto City 606-8502, Japan
| | - Seiya Mochida
- Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto City 606-8502, Japan
| | - Tohru Fushiki
- Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto City 606-8502, Japan
| |
Collapse
|
7
|
Matriptase does not require hepatocyte growth factor activator inhibitor type-1 for activation in an epithelial cell expression model. Biosci Biotechnol Biochem 2010; 74:848-50. [PMID: 20378965 DOI: 10.1271/bbb.90696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Matriptase is a type II transmembrane serine protease. Paradoxically, activation of this protease is thought to require its physiological inhibitor, hepatocyte growth factor activator inhibitor type-1 (HAI-1). In the present study, however, we obtained evidence in a stable transfection experiment using Madin-Darby canine kidney cells that matriptase activation does not require HAI-1.
Collapse
|
8
|
The role of asparagine-linked glycosylation site on the catalytic domain of matriptase in its zymogen activation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:156-65. [DOI: 10.1016/j.bbapap.2009.09.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/16/2009] [Accepted: 09/25/2009] [Indexed: 11/17/2022]
|
9
|
Inouye K, Yasumoto M, Tsuzuki S, Mochida S, Fushiki T. The optimal activity of a pseudozymogen form of recombinant matriptase under the mildly acidic pH and low ionic strength conditions. J Biochem 2009; 147:485-92. [PMID: 19919953 DOI: 10.1093/jb/mvp190] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Matriptase is a transmembrane serine protease that is strongly expressed in epithelial cells. The single-chain zymogen of matriptase is considered to have inherent activity, leading to its own activation (i.e. conversion to the disulphide-linked-two-chain form by cleavage after Thr-Lys-Gln-Ala-Arg614). Also, there is growing evidence that the activation of zymogen occurs at the cell surface and in relation to the acidification and lowering of ionic strength within cell-surface microenvironments. The present study aimed to provide evidence for the involvement of zymogen activity in its activation in physiologically relevant cellular contexts. For this purpose, the activity of a pseudozymogen form of recombinant matriptase (HL-matriptase zymogen) was examined using acetyl-l-Lys-l-Thr-l-Lys-l-Gln-l-Leu-l-Arg-4-methyl-coumaryl-7-amide as a substrate. HL-matriptase zymogen exhibited optimal activity toward the substrate pH approximately 6.0. The substrate hydrolysis at the pH value was hardly detected when NaCl was present at a concentration of 145 mM. In a buffer of pH 6.0 containing 5 mM NaCl, the activity of HL-matriptase zymogen was only approximately 30-times lower than that of the respective two-chain form. These findings suggest that the in vivo activation of matriptase zymogen occurs via a mechanism involving the zymogen activity.
Collapse
Affiliation(s)
- Kuniyo Inouye
- Laboratory of Enzyme Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto City 606-8502, Japan.
| | | | | | | | | |
Collapse
|
10
|
Miyake Y, Tsuzuki S, Yasumoto M, Fushiki T, Inouye K. Requirement of the activity of hepatocyte growth factor activator inhibitor type 1 for the extracellular appearance of a transmembrane serine protease matriptase in monkey kidney COS-1 cells. Cytotechnology 2009; 60:95. [PMID: 19655263 DOI: 10.1007/s10616-009-9219-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 07/22/2009] [Indexed: 01/26/2023] Open
Abstract
Hepatocyte growth factor activator inhibitor type I (HAI-1) is a membrane-bound, serine protease inhibitor with two protease-inhibitory domains (Kunitz domain I and II). HAI-1 is known as a physiological inhibitor of a membrane-bound serine protease, matriptase. Paradoxically, however, HAI-1 has been found to be required for the extracellular appearance of the protease in an expression system using a monkey kidney COS-1 cell line. In the present study, we show using COS-1 cells that co-expression of recombinant variants of HAI-1 with the inhibition activity toward matriptase, including a variant consisting only of Kunitz domain I (the domain responsible for inhibition of matriptase), allowed for the appearance of this protease in the conditioned medium, whereas that of the variants without the activity did not. These findings suggest that the inhibition activity toward matriptase is critical for the extracellular appearance of protease in COS-1 cells.
Collapse
Affiliation(s)
- Yuka Miyake
- Laboratory of Enzyme Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Satoshi Tsuzuki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Makoto Yasumoto
- Laboratory of Enzyme Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Tohru Fushiki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kuniyo Inouye
- Laboratory of Enzyme Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|