1
|
Balboni B, Rinaldi F, Previtali V, Ciamarone A, Girotto S, Cavalli A. Novel Insights into RAD52's Structure, Function, and Druggability for Synthetic Lethality and Innovative Anticancer Therapies. Cancers (Basel) 2023; 15:1817. [PMID: 36980703 PMCID: PMC10046612 DOI: 10.3390/cancers15061817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
In recent years, the RAD52 protein has been highlighted as a mediator of many DNA repair mechanisms. While RAD52 was initially considered to be a non-essential auxiliary factor, its inhibition has more recently been demonstrated to be synthetically lethal in cancer cells bearing mutations and inactivation of specific intracellular pathways, such as homologous recombination. RAD52 is now recognized as a novel and critical pharmacological target. In this review, we comprehensively describe the available structural and functional information on RAD52. The review highlights the pathways in which RAD52 is involved and the approaches to RAD52 inhibition. We discuss the multifaceted role of this protein, which has a complex, dynamic, and functional 3D superstructural arrangement. This complexity reinforces the need to further investigate and characterize RAD52 to solve a challenging mechanistic puzzle and pave the way for a robust drug discovery campaign.
Collapse
Affiliation(s)
- Beatrice Balboni
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Francesco Rinaldi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Viola Previtali
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Andrea Ciamarone
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Stefania Girotto
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
2
|
Hu C, Jiang X. The SUMO-specific protease family regulates cancer cell radiosensitivity. Biomed Pharmacother 2019; 109:66-70. [DOI: 10.1016/j.biopha.2018.10.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
|
3
|
Human Rad52 Promotes XPG-Mediated R-loop Processing to Initiate Transcription-Associated Homologous Recombination Repair. Cell 2018; 175:558-570.e11. [DOI: 10.1016/j.cell.2018.08.056] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/02/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022]
|
4
|
Yasuda T, Kagawa W, Ogi T, Kato TA, Suzuki T, Dohmae N, Takizawa K, Nakazawa Y, Genet MD, Saotome M, Hama M, Konishi T, Nakajima NI, Hazawa M, Tomita M, Koike M, Noshiro K, Tomiyama K, Obara C, Gotoh T, Ui A, Fujimori A, Nakayama F, Hanaoka F, Sugasawa K, Okayasu R, Jeggo PA, Tajima K. Novel function of HATs and HDACs in homologous recombination through acetylation of human RAD52 at double-strand break sites. PLoS Genet 2018; 14:e1007277. [PMID: 29590107 PMCID: PMC5891081 DOI: 10.1371/journal.pgen.1007277] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 04/09/2018] [Accepted: 02/26/2018] [Indexed: 11/18/2022] Open
Abstract
The p300 and CBP histone acetyltransferases are recruited to DNA double-strand break (DSB) sites where they induce histone acetylation, thereby influencing the chromatin structure and DNA repair process. Whether p300/CBP at DSB sites also acetylate non-histone proteins, and how their acetylation affects DSB repair, remain unknown. Here we show that p300/CBP acetylate RAD52, a human homologous recombination (HR) DNA repair protein, at DSB sites. Using in vitro acetylated RAD52, we identified 13 potential acetylation sites in RAD52 by a mass spectrometry analysis. An immunofluorescence microscopy analysis revealed that RAD52 acetylation at DSBs sites is counteracted by SIRT2- and SIRT3-mediated deacetylation, and that non-acetylated RAD52 initially accumulates at DSB sites, but dissociates prematurely from them. In the absence of RAD52 acetylation, RAD51, which plays a central role in HR, also dissociates prematurely from DSB sites, and hence HR is impaired. Furthermore, inhibition of ataxia telangiectasia mutated (ATM) protein by siRNA or inhibitor treatment demonstrated that the acetylation of RAD52 at DSB sites is dependent on the ATM protein kinase activity, through the formation of RAD52, p300/CBP, SIRT2, and SIRT3 foci at DSB sites. Our findings clarify the importance of RAD52 acetylation in HR and its underlying mechanism.
Collapse
Affiliation(s)
- Takeshi Yasuda
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences (NIRS), Anagawa, Inage-ku, Chiba, Japan
- * E-mail: (TY); (KT)
| | - Wataru Kagawa
- Program in Chemistry and Life Science, Department of Interdisciplinary Science and Engineering, School of Science and Engineering, Meisei University, Hodokubo, Hino-shi, Tokyo, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Takamitsu A. Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Hirosawa, Wako, Saitama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Hirosawa, Wako, Saitama, Japan
| | - Kazuya Takizawa
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences (NIRS), Anagawa, Inage-ku, Chiba, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Matthew D. Genet
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Mika Saotome
- Program in Chemistry and Life Science, Department of Interdisciplinary Science and Engineering, School of Science and Engineering, Meisei University, Hodokubo, Hino-shi, Tokyo, Japan
| | - Michio Hama
- Department of Basic Medical Sciences for Radiation Damage, NIRS, National Institutes for Quantum and Radiation Sciences and Technology (QST), Anagawa, Inage-ku, Chiba, Japan
| | - Teruaki Konishi
- Department of Basic Medical Sciences for Radiation Damage, NIRS, National Institutes for Quantum and Radiation Sciences and Technology (QST), Anagawa, Inage-ku, Chiba, Japan
| | | | - Masaharu Hazawa
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences (NIRS), Anagawa, Inage-ku, Chiba, Japan
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Masanori Tomita
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, Iwado Kita, Komae-shi, Tokyo, Japan
| | - Manabu Koike
- Research Center for Radiation Protection, NIRS, 4-9-1 Anagawa, Inage-ku, Chiba, Japan
| | - Katsuko Noshiro
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences (NIRS), Anagawa, Inage-ku, Chiba, Japan
| | - Kenichi Tomiyama
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences (NIRS), Anagawa, Inage-ku, Chiba, Japan
| | - Chizuka Obara
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences (NIRS), Anagawa, Inage-ku, Chiba, Japan
| | - Takaya Gotoh
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences (NIRS), Anagawa, Inage-ku, Chiba, Japan
| | - Ayako Ui
- Genome regulation and Molecular pharmacogenomics, School of Bioscience and Biotechnology, Tokyo University of Technology, Katakuramachi, Hachioji City, Tokyo, Japan
| | - Akira Fujimori
- Research Center for Charged Particle Therapy, NIRS, Anagawa, Inage-ku, Chiba, Japan
- International Open Laboratory (IOL), NIRS, Anagawa, Inage-ku, Chiba, Japan
| | - Fumiaki Nakayama
- Department of Basic Medical Sciences for Radiation Damage, NIRS, National Institutes for Quantum and Radiation Sciences and Technology (QST), Anagawa, Inage-ku, Chiba, Japan
| | - Fumio Hanaoka
- Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, and Graduate School of Science, Kobe University, Rokkodai-cho, Nada-ku, Kobe, Japan
| | - Ryuichi Okayasu
- International Open Laboratory (IOL), NIRS, Anagawa, Inage-ku, Chiba, Japan
| | - Penny A. Jeggo
- International Open Laboratory (IOL), NIRS, Anagawa, Inage-ku, Chiba, Japan
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Katsushi Tajima
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences (NIRS), Anagawa, Inage-ku, Chiba, Japan
- * E-mail: (TY); (KT)
| |
Collapse
|
5
|
Zilio N, Eifler-Olivi K, Ulrich HD. Functions of SUMO in the Maintenance of Genome Stability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:51-87. [PMID: 28197906 DOI: 10.1007/978-3-319-50044-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Like in most other areas of cellular metabolism, the functions of the ubiquitin-like modifier SUMO in the maintenance of genome stability are manifold and varied. Perturbations of global sumoylation causes a wide spectrum of phenotypes associated with defects in DNA maintenance, such as hypersensitivity to DNA-damaging agents, gross chromosomal rearrangements and loss of entire chromosomes. Consistent with these observations, many key factors involved in various DNA repair pathways have been identified as SUMO substrates. However, establishing a functional connection between a given SUMO target, the cognate SUMO ligase and a relevant phenotype has remained a challenge, mainly because of the difficulties involved in identifying important modification sites and downstream effectors that specifically recognize the target in its sumoylated state. This review will give an overview over the major pathways of DNA repair and genome maintenance influenced by the SUMO system and discuss selected examples of SUMO's actions in these pathways where the biological consequences of the modification have been elucidated.
Collapse
Affiliation(s)
- Nicola Zilio
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany
| | | | - Helle D Ulrich
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany.
| |
Collapse
|
6
|
Chang HR, Munkhjargal A, Kim MJ, Park SY, Jung E, Ryu JH, Yang Y, Lim JS, Kim Y. The functional roles of PML nuclear bodies in genome maintenance. Mutat Res 2017; 809:99-107. [PMID: 28521962 DOI: 10.1016/j.mrfmmm.2017.05.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
In the nucleus, there are several membraneless structures called nuclear bodies. Among them, promyelocytic leukemia nuclear bodies (PML-NBs) are involved in multiple genome maintenance pathways including the DNA damage response, DNA repair, telomere homeostasis, and p53-associated apoptosis. In response to DNA damage, PML-NBs are coalesced and divided by a fission mechanism, thus increasing their number. PML-NBs also play a role in repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). Clinically, the dominant negative PML-RARα fusion protein expressed in acute promyelocytic leukemia (APL) inhibits the transactivation of downstream factors and disrupts PML function, revealing the tumor suppressor role of PML-NBs. All-trans retinoic acid and arsenic trioxide treatment has been implemented for promyelocytic leukemia to target the PML-RARα fusion protein. PML-NBs are associated with various factors implicated in genome maintenance, and are found at the sites of DNA damage. Their interaction with proteins such as p53 indicates that PML-NBs may play a significant role in apoptosis and cancer. Decades of research have revealed the importance of PML-NBs in diverse cellular pathways, yet the underlying molecular mechanisms and exact functions of PML-NBs remain elusive. In this review, PML protein modifications and the functional relevance of PML-NB and its associated factors in genome maintenance will be discussed.
Collapse
Affiliation(s)
- Hae Ryung Chang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Anudari Munkhjargal
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Myung-Jin Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Seon Young Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Eunyoung Jung
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|
7
|
Reappearance from Obscurity: Mammalian Rad52 in Homologous Recombination. Genes (Basel) 2016; 7:genes7090063. [PMID: 27649245 PMCID: PMC5042393 DOI: 10.3390/genes7090063] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 01/28/2023] Open
Abstract
Homologous recombination (HR) plays an important role in maintaining genomic integrity. It is responsible for repair of the most harmful DNA lesions, DNA double-strand breaks and inter-strand DNA cross-links. HR function is also essential for proper segregation of homologous chromosomes in meiosis, maintenance of telomeres, and resolving stalled replication forks. Defects in HR often lead to genetic diseases and cancer. Rad52 is one of the key HR proteins, which is evolutionarily conserved from yeast to humans. In yeast, Rad52 is important for most HR events; Rad52 mutations disrupt repair of DNA double-strand breaks and targeted DNA integration. Surprisingly, in mammals, Rad52 knockouts showed no significant DNA repair or recombination phenotype. However, recent work demonstrated that mutations in human RAD52 are synthetically lethal with mutations in several other HR proteins including BRCA1 and BRCA2. These new findings indicate an important backup role for Rad52, which complements the main HR mechanism in mammals. In this review, we focus on the Rad52 activities and functions in HR and the possibility of using human RAD52 as therapeutic target in BRCA1 and BRCA2-deficient familial breast cancer and ovarian cancer.
Collapse
|
8
|
Affiliation(s)
- Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey; Department of Radiation Oncology; Rutgers Robert Wood Johnson Medical School; Rutgers, The State University of New Jersey; New Brunswick, NJ USA
| | | |
Collapse
|
9
|
Koike M, Yutoku Y, Koike A. The C-terminal region of Rad52 is essential for Rad52 nuclear and nucleolar localization, and accumulation at DNA damage sites immediately after irradiation. Biochem Biophys Res Commun 2013; 435:260-6. [PMID: 23639616 DOI: 10.1016/j.bbrc.2013.04.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 11/26/2022]
Abstract
Rad52 plays essential roles in homologous recombination (HR) and repair of DNA double-strand breaks (DSBs) in Saccharomyces cerevisiae. However, in vertebrates, knockouts of the Rad52 gene show no hypersensitivity to agents that induce DSBs. Rad52 localizes in the nucleus and forms foci at a late stage following irradiation. Ku70 and Ku80, which play an essential role in nonhomologous DNA-end-joining (NHEJ), are essential for the accumulation of other core NHEJ factors, e.g., XRCC4, and a HR-related factor, e.g., BRCA1. Here, we show that the subcellular localization of EYFP-Rad52(1-418) changes dynamically during the cell cycle. In addition, EYFP-Rad52(1-418) accumulates rapidly at microirradiated sites and colocalizes with the DSB sensor protein Ku80. Moreover, the accumulation of EYFP-Rad52(1-418) at DSB sites is independent of the core NHEJ factors, i.e., Ku80 and XRCC4. Furthermore, we observed that EYFP-Rad52(1-418) localizes in nucleoli in CHO-K1 cells and XRCC4-deficient cells, but not in Ku80-deficient cells. We also found that Rad52 nuclear localization, nucleolar localization, and accumulation at DSB sites are dependent on eight amino acids (411-418) at the end of the C-terminal region of Rad52 (Rad52 CTR). Furthermore, basic amino acids on Rad52 CTR are highly conserved among mammalian, avian, and fish homologues, suggesting that Rad52 CTR is important for the regulation and function of Rad52 in vertebrates. These findings also suggest that the mechanism underlying the regulation of subcellular localization of Rad52 is important for the physiological function of Rad52 not only at a late stage following irradiation, but also at an early stage.
Collapse
Affiliation(s)
- Manabu Koike
- DNA Repair Gene Res., National Institute of Radiological Sciences, Inage-ku, Chiba, Japan.
| | | | | |
Collapse
|
10
|
Bergink S, Ammon T, Kern M, Schermelleh L, Leonhardt H, Jentsch S. Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51-Rad52 interaction. Nat Cell Biol 2013; 15:526-32. [PMID: 23624404 DOI: 10.1038/ncb2729] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 03/08/2013] [Indexed: 12/12/2022]
Abstract
Cdc48 (also known as p97), a conserved chaperone-like ATPase, plays a strategic role in the ubiquitin system. Empowered by ATP-driven conformational changes, Cdc48 acts as a segregase by dislodging ubiquitylated proteins from their environment. Ufd1, a known co-factor of Cdc48, also binds SUMO (ref. 6), but whether SUMOylated proteins are subject to the segregase activity of Cdc48 as well and what these substrates are remains unknown. Here we show that Cdc48 with its co-factor Ufd1 is SUMO-targeted to proteins involved in DNA double-strand break repair. Cdc48 associates with SUMOylated Rad52, a factor that assembles the Rad51 recombinase on chromatin. By acting on the Rad52-Rad51 complex, Cdc48 curbs their physical interaction and displaces the proteins from DNA. Genetically interfering with SUMO-targeting or segregase activity leads to an increase in spontaneous recombination rates, accompanied by aberrant in vivo Rad51 foci formation in yeast and mammalian cells. Our data thus suggest that SUMO-targeted Cdc48 restricts the recombinase Rad51 by counterbalancing the activity of Rad52. We propose that Cdc48, through its ability to associate with co-factors that have affinities for ubiquitin and SUMO, connects the two modification pathways for protein degradation or other regulatory purposes.
Collapse
Affiliation(s)
- Steven Bergink
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Lok BH, Powell SN. Molecular pathways: understanding the role of Rad52 in homologous recombination for therapeutic advancement. Clin Cancer Res 2012; 18:6400-6. [PMID: 23071261 PMCID: PMC3513650 DOI: 10.1158/1078-0432.ccr-11-3150] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Rad52 protein was largely ignored in humans and other mammals when the mouse knockout revealed a largely "no-effect" phenotype. However, using synthetic lethal approaches to investigate context-dependent function, new studies have shown that Rad52 plays a key survival role in cells lacking the function of the breast cancer type 1 susceptibility protein (BRCA1)-BRCA2 pathway of homologous recombination. Biochemical studies also showed significant differences between yeast and human Rad52 (hRad52), in which yeast Rad52 can promote strand invasion of replication protein A (RPA)-coated single-stranded DNA (ssDNA) in the presence of Rad51 but hRad52 cannot. This results in the paradox of how is hRad52 providing Rad51 function: presumably there is something missing in the biochemical assays that exists in vivo, but the nature of this missing factor is currently unknown. Recent studies have suggested that Rad52 provides back-up Rad51 function for all members of the BRCA1-BRCA2 pathway, suggesting that Rad52 may be a target for therapy in BRCA pathway-deficient cancers. Screening for ways to inhibit Rad52 would potentially provide a complementary strategy for targeting BRCA-deficient cancers in addition to poly (ADP-ribose) polymerase (PARP) inhibitors.
Collapse
Affiliation(s)
- Benjamin H. Lok
- Memorial Sloan-Kettering Cancer Center, New York, NY
- New York University School of Medicine, New York, NY
| | | |
Collapse
|
12
|
Truong K, Lee TD, Li B, Chen Y. Sumoylation of SAE2 C terminus regulates SAE nuclear localization. J Biol Chem 2012; 287:42611-9. [PMID: 23095757 DOI: 10.1074/jbc.m112.420877] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
SUMOylation occurs predominantly in the nucleus, but non-nuclear proteins can also be SUMOylated. It is unclear how intracellular trafficking of the SUMOylation enzymes is regulated to catalyze SUMOylation in different cellular compartments. Here we report that the SAE2 subunit of human SUMO activation enzyme (SAE) underwent rapid nucleocytoplasmic shuttling and its nuclear accumulation depended on SUMO modification at the C terminus. The SUMOylation sites included three Lys residues on the bipartite nuclear localization sequence (NLS) and two Lys residues outside of but adjacent to the NLS, and their SUMOylation was catalyzed by Ubc9. Because SAE2 forms a tight heterodimer with SAE1 and it controls the trafficking of the heterodimer, this study has identified the mechanism used to localize SAE to the nucleus. Similar mechanisms are likely to exist for other proteins that depend on SUMOylation for nuclear localization.
Collapse
Affiliation(s)
- Khue Truong
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
13
|
Altmannová V, Kolesár P, Krejčí L. SUMO Wrestles with Recombination. Biomolecules 2012; 2:350-75. [PMID: 24970142 PMCID: PMC4030836 DOI: 10.3390/biom2030350] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 06/27/2012] [Accepted: 07/13/2012] [Indexed: 01/21/2023] Open
Abstract
DNA double-strand breaks (DSBs) comprise one of the most toxic DNA lesions, as the failure to repair a single DSB has detrimental consequences on the cell. Homologous recombination (HR) constitutes an error-free repair pathway for the repair of DSBs. On the other hand, when uncontrolled, HR can lead to genome rearrangements and needs to be tightly regulated. In recent years, several proteins involved in different steps of HR have been shown to undergo modification by small ubiquitin-like modifier (SUMO) peptide and it has been suggested that deficient sumoylation impairs the progression of HR. This review addresses specific effects of sumoylation on the properties of various HR proteins and describes its importance for the homeostasis of DNA repetitive sequences. The article further illustrates the role of sumoylation in meiotic recombination and the interplay between SUMO and other post-translational modifications.
Collapse
Affiliation(s)
| | - Peter Kolesár
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.
| | - Lumír Krejčí
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.
| |
Collapse
|
14
|
Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucleic Acids Res 2012; 40:5795-818. [PMID: 22467216 PMCID: PMC3401455 DOI: 10.1093/nar/gks270] [Citation(s) in RCA: 467] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Homologous recombination (HR) is critical both for repairing DNA lesions in mitosis and for chromosomal pairing and exchange during meiosis. However, some forms of HR can also lead to undesirable DNA rearrangements. Multiple regulatory mechanisms have evolved to ensure that HR takes place at the right time, place and manner. Several of these impinge on the control of Rad51 nucleofilaments that play a central role in HR. Some factors promote the formation of these structures while others lead to their disassembly or the use of alternative repair pathways. In this article, we review these mechanisms in both mitotic and meiotic environments and in different eukaryotic taxa, with an emphasis on yeast and mammal systems. Since mutations in several proteins that regulate Rad51 nucleofilaments are associated with cancer and cancer-prone syndromes, we discuss how understanding their functions can lead to the development of better tools for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lumir Krejci
- Department of Biology, Masaryk University, Brno, Czech Republic.
| | | | | | | |
Collapse
|
15
|
Audard V, Pawlak A, Candelier M, Lang P, Sahali D. Upregulation of nuclear factor-related kappa B suggests a disorder of transcriptional regulation in minimal change nephrotic syndrome. PLoS One 2012; 7:e30523. [PMID: 22291976 PMCID: PMC3264618 DOI: 10.1371/journal.pone.0030523] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/18/2011] [Indexed: 11/22/2022] Open
Abstract
Immune mechanisms underlying the pathophysiology of idiopathic nephrotic syndrome, the most frequent glomerular disease in children, are believed to involve a systemic disorder of T cell function and cell mediated immunity. How these perturbations take place remains unclear. We report here that NFRKB, a member of the chromatin remodeling complex, is upregulated in MCNS relapse, mainly in CD4+T cells and B cells and undergo post-translational modifications including sumoylation. We showed that NFRKB was highly expressed in nuclear compartment during the relapse, while it was restricted to cytoplasm in remission. NFRKB induced the activation of AP1 signaling pathway by upregulating the expression of c-jun. We showed that NFRKB promotes hypomethylation of genomic DNA, suggesting its implication in regulation of gene expression by enhancing the binding of transcription factors through chromatin remodeling. These results suggest for the first time that NFRKB may be involved in the disorders of transcriptional regulation commonly observed in MCNS relapse.
Collapse
|
16
|
Abstract
Sumoylation is a posttranslational modification process in which SUMO proteins are covalently and reversibly conjugated to their targets via enzymatic cascade reactions. Since the discovery of SUMO-1 in 1996, the SUMO pathway has garnered increased attention due to its role in a number of important biological activities such as cell cycle progression, epigenetic modulation, signal transduction, and DNA replication/repair, as well as its potential implication in human pathogenesis such as in cancer development and metastasis, neurodegenerative disorders and craniofacial defects. The role of the SUMO pathway in regulating cardiogenic gene activity, development and/or disorders is just emerging. Our review is based on recent advances that highlight the regulation of cardiac gene activity in cardiac development and disease by the SUMO conjugation pathway.
Collapse
Affiliation(s)
- Jun Wang
- Center for Stem Cell Engineering, Department of Basic Research Laboratories, Texas Heart Institute, Houston, TX 77030
| | - Robert J Schwartz
- Center for Stem Cell Engineering, Department of Basic Research Laboratories, Texas Heart Institute, Houston, TX 77030
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| |
Collapse
|