1
|
Uchida C, Niida H, Sakai S, Iijima K, Kitagawa K, Ohhata T, Shiotani B, Kitagawa M. p130RB2 positively contributes to ATR activation in response to replication stress via the RPA32-ETAA1 axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119484. [PMID: 37201767 DOI: 10.1016/j.bbamcr.2023.119484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 03/17/2023] [Accepted: 04/23/2023] [Indexed: 05/20/2023]
Abstract
Ataxia-telangiectasia mutated and Rad3-related (ATR) kinase is a crucial regulator of the cell cycle checkpoint and activated in response to DNA replication stress by two independent pathways via RPA32-ETAA1 and TopBP1. However, the precise activation mechanism of ATR by the RPA32-ETAA1 pathway remains unclear. Here, we show that p130RB2, a member of the retinoblastoma protein family, participates in the pathway under hydroxyurea-induced DNA replication stress. p130RB2 binds to ETAA1, but not TopBP1, and depletion of p130RB2 inhibits the RPA32-ETAA1 interaction under replication stress. Moreover, p130RB2 depletion reduces ATR activation accompanied by phosphorylation of its targets RPA32, Chk1, and ATR itself. It also causes improper re-progression of S phase with retaining single-stranded DNA after cancelation of the stress, which leads to an increase in the anaphase bridge phenotype and a decrease in cell survival. Importantly, restoration of p130RB2 rescued the disrupted phenotypes of p130RB2 knockdown cells. These results suggest positive involvement of p130RB2 in the RPA32-ETAA1-ATR axis and proper re-progression of the cell cycle to maintain genome integrity.
Collapse
Affiliation(s)
- Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kenta Iijima
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kyoko Kitagawa
- Department of Environmental Health, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
2
|
Interdomain dynamics in human Replication Protein A regulates kinetics and thermodynamics of its binding to ssDNA. PLoS One 2023; 18:e0278396. [PMID: 36656834 PMCID: PMC9851514 DOI: 10.1371/journal.pone.0278396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/15/2022] [Indexed: 01/20/2023] Open
Abstract
Human Replication Protein A (hRPA) is a multidomain protein that interacts with ssDNA intermediates to provide the latter much-needed stability during DNA metabolism and maintain genomic integrity. Although the ssDNA organization with hRPA was studied recently through experimental means, characterizing the underlying mechanism at the atomic level remains challenging because of the dynamic domain architecture of hRPA and poorly understood heterogeneity of ssDNA-protein interactions. Here, we used a computational framework, precisely tailored to capture protein-ssDNA interactions, and investigated the binding of hRPA with a 60 nt ssDNA. Two distinct binding mechanisms are realized based on the hRPA domain flexibility. For a rigid domain architecture of hRPA, ssDNA binds sequentially with hRPA domains, resulting in slow association kinetics. The binding pathway involves the formation of stable and distinct intermediate states. On contrary, for a flexible domain architecture of hRPA, ssDNA binds synergistically to the A and B domains followed by the rest of hRPA. The domain dynamics in hRPA alleviates the free energy cost of domain orientation necessary for specific binding with ssDNA, leading to fast association kinetics along a downhill binding free energy landscape. An ensemble of free energetically degenerate intermediate states is encountered that makes it arduous to characterize them structurally. An excellent match between our results with the available experimental observations provides new insights into the rich dynamics of hRPA binding to ssDNA and in general paves the way to investigate intricate details of ssDNA-protein interactions, crucial for cellular functioning.
Collapse
|
3
|
Li T, Tang L, Kou H, Wang F. PRIMPOL competes with RAD51 to resolve G-quadruplex-induced replication stress via its interaction with RPA. Acta Biochim Biophys Sin (Shanghai) 2022; 55:498-507. [PMID: 36647718 PMCID: PMC10160237 DOI: 10.3724/abbs.2022165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
<p indent="0mm">PRIMPOL (primase-polymerase) is a recently discovered DNA primase-polymerase involved in DNA damage tolerance and replication stress response in eukaryotic cells. However, the detailed mechanism of the PRIMPOL response to replication stress remains elusive. Here, we demonstrate that replication-related factors, including replication protein A (RPA), regulate the accumulation of PRIMPOL in subnuclear foci in response to replication stress induced by replication inhibitors. Moreover, PRIMPOL works at G-quadruplexes (G4s) in human cells to resolve the replication stress induced by G4s. The formation of PRIMPOL foci persists throughout the cell cycle. We further demonstrate that PRIMPOL competes with RAD51 to resolve G4-induced replication stress. In conclusion, our results provide novel insight into the mechanism of PRIMPOL in G4s to resolve replication stress and competition between PRIMPOL (repriming)- and RAD51 (fork reversal)-mediated pathways, which indicates a new strategy to improve the tumor response to DNA-damaging chemotherapy by targeting the PRIMPOL pathway.</p>.
Collapse
Affiliation(s)
- Tingfang Li
- Department of Genetics, School of Basic Medical Sciences, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Lu Tang
- Department of Stomatology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Haomeng Kou
- Department of Genetics, School of Basic Medical Sciences, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical, General Hospital, Tianjin Medical University, Tianjin 300070, China.,School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
4
|
Ahmad F, Patterson A, Deveryshetty J, Mattice JR, Pokhrel N, Bothner B, Antony E. Hydrogen-deuterium exchange reveals a dynamic DNA-binding map of replication protein A. Nucleic Acids Res 2021; 49:1455-1469. [PMID: 33444457 PMCID: PMC7897470 DOI: 10.1093/nar/gkaa1288] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/29/2022] Open
Abstract
Replication protein A (RPA) binds to single-stranded DNA (ssDNA) and interacts with over three dozen enzymes and serves as a recruitment hub to coordinate most DNA metabolic processes. RPA binds ssDNA utilizing multiple oligosaccharide/oligonucleotide binding domains and based on their individual DNA binding affinities are classified as high versus low-affinity DNA-binding domains (DBDs). However, recent evidence suggests that the DNA-binding dynamics of DBDs better define their roles. Utilizing hydrogen-deuterium exchange mass spectrometry (HDX-MS), we assessed the ssDNA-driven dynamics of the individual domains of human RPA. As expected, ssDNA binding shows HDX changes in DBDs A, B, C, D and E. However, DBD-A and DBD-B are dynamic and do not show robust DNA-dependent protection. DBD-C displays the most extensive changes in HDX, suggesting a major role in stabilizing RPA on ssDNA. Slower allosteric changes transpire in the protein-protein interaction domains and linker regions, and thus do not directly interact with ssDNA. Within a dynamics-based model for RPA, we propose that DBD-A and -B act as the dynamic half and DBD-C, -D and -E function as the less-dynamic half. Thus, segments of ssDNA buried under the dynamic half are likely more readily accessible to RPA-interacting proteins.
Collapse
Affiliation(s)
- Faiz Ahmad
- Department of Biochemistry, Saint Louis University, School of Medicine, St. Louis, MO 63104, USA
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Jaigeeth Deveryshetty
- Department of Biochemistry, Saint Louis University, School of Medicine, St. Louis, MO 63104, USA
| | - Jenna R Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Edwin Antony
- Department of Biochemistry, Saint Louis University, School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
5
|
Jiang Y, Yam JC, Tham CC, Pang CP, Chu WK. RB Regulates DNA Double Strand Break Repair Pathway Choice by Mediating CtIP Dependent End Resection. Int J Mol Sci 2020; 21:E9176. [PMID: 33271982 PMCID: PMC7730402 DOI: 10.3390/ijms21239176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/15/2023] Open
Abstract
Inactivation of the retinoblastoma tumor suppressor gene (RB1) leads to genome instability, and can be detected in retinoblastoma and other cancers. One damaging effect is causing DNA double strand breaks (DSB), which, however, can be repaired by homologous recombination (HR), classical non-homologous end joining (C-NHEJ), and micro-homology mediated end joining (MMEJ). We aimed to study the mechanistic roles of RB in regulating multiple DSB repair pathways. Here we show that HR and C-NHEJ are decreased, but MMEJ is elevated in RB-depleted cells. After inducing DSB by camptothecin, RB co-localizes with CtIP, which regulates DSB end resection. RB depletion leads to less RPA and native BrdU foci, which implies less end resection. In RB-depleted cells, less CtIP foci, and a lack of phosphorylation on CtIP Thr847, are observed. According to the synthetic lethality principle, based on the altered DSB repair pathway choice, after inducing DSBs by camptothecin, RB depleted cells are more sensitive to co-treatment with camptothecin and MMEJ blocker poly-ADP ribose polymerase 1 (PARP1) inhibitor. We propose a model whereby RB can regulate DSB repair pathway choice by mediating the CtIP dependent DNA end resection. The use of PARP1 inhibitor could potentially improve treatment outcomes for RB-deficient cancers.
Collapse
Affiliation(s)
| | | | | | | | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.J.); (J.C.Y.); (C.C.T.); (C.P.P.)
| |
Collapse
|
6
|
Huang TT, Brill E, Nair JR, Zhang X, Wilson KM, Chen L, Thomas CJ, Lee JM. Targeting the PI3K/mTOR Pathway Augments CHK1 Inhibitor-Induced Replication Stress and Antitumor Activity in High-Grade Serous Ovarian Cancer. Cancer Res 2020; 80:5380-5392. [PMID: 32998994 DOI: 10.1158/0008-5472.can-20-1439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/04/2020] [Accepted: 09/18/2020] [Indexed: 01/08/2023]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecologic malignancy in industrialized countries and has limited treatment options. Targeting ataxia-telangiectasia and Rad3-related/cell-cycle checkpoint kinase 1 (CHK1)-mediated S-phase and G2-M-phase cell-cycle checkpoints has been a promising therapeutic strategy in HGSOC. To improve the efficacy of CHK1 inhibitor (CHK1i), we conducted a high-throughput drug combination screening in HGSOC cells. PI3K/mTOR pathway inhibitors (PI3K/mTORi) showed supra-additive cytotoxicity with CHK1i. Combined treatment with CHK1i and PI3K/mTORi significantly attenuated cell viability and increased DNA damage, chromosomal breaks, and mitotic catastrophe compared with monotherapy. PI3K/mTORi decelerated fork speed by promoting new origin firing via increased CDC45, thus potentiating CHK1i-induced replication stress. PI3K/mTORi also augmented CHK1i-induced DNA damage by attenuating DNA homologous recombination repair activity and RAD51 foci formation. High expression of replication stress markers was associated with poor prognosis in patients with HGSOC. Our findings indicate that combined PI3K/mTORi and CHK1i induces greater cell death in HGSOC cells and in vivo models by causing lethal replication stress and DNA damage. This insight can be translated therapeutically by further developing combinations of PI3K and cell-cycle pathway inhibitors in HGSOC. SIGNIFICANCE: Dual inhibition of CHK1 and PI3K/mTOR pathways yields potent synthetic lethality by causing lethal replication stress and DNA damage in HGSOC, warranting further clinical development.
Collapse
Affiliation(s)
- Tzu-Ting Huang
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland.
| | - Ethan Brill
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Jayakumar R Nair
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland.,Lymphoid Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| |
Collapse
|
7
|
Affiliation(s)
- Christian Speck
- a DNA Replication Group, Institute of Clinical Sciences, Imperial College London , London , UK.,b bMRC Clinical Sciences Centre , Du Cane Road, London , UK
| |
Collapse
|
8
|
Broderick R, Rainey MD, Santocanale C, Nasheuer HP. Cell cycle-dependent formation of Cdc45-Claspin complexes in human cells is compromized by UV-mediated DNA damage. FEBS J 2013; 280:4888-902. [PMID: 23910567 DOI: 10.1111/febs.12465] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 11/30/2022]
Abstract
The replication factor Cdc45 has essential functions in the initiation and elongation steps of eukaryotic DNA replication and plays an important role in the intra-S-phase checkpoint. Its interactions with other replication proteins during the cell cycle and after intra-S-phase checkpoint activation are only partially characterized. In the present study, we show that the C terminal part of Cdc45 may mediate its interactions with Claspin. The interactions of human Cdc45 with the three replication factors Claspin, replication protein A and DNA polymerase δ are maximal during the S phase. Following UVC-induced DNA damage, Cdc45-Claspin complex formation is reduced, whereas the binding of Cdc45 to replication protein A is not affected. We also show that treatment of cells with UCN-01 and phosphatidylinositol 3-kinase-like kinase inhibitors does not rescue the UV-induced destabilization of Cdc45-Claspin interactions, suggesting that the loss of the interaction between Cdc45 and Claspin occurs upstream of ataxia telangiectasia and Rad 3-related activation in the intra-S-phase checkpoint.
Collapse
Affiliation(s)
- Ronan Broderick
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | | | | | | |
Collapse
|
9
|
BRCA1 promotes the ubiquitination of PCNA and recruitment of translesion polymerases in response to replication blockade. Proc Natl Acad Sci U S A 2013; 110:13558-63. [PMID: 23901102 DOI: 10.1073/pnas.1306534110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer gene 1 (BRCA1) deficient cells not only are hypersensitive to double-strand breaks but also are hypersensitive to UV irradiation and other agents that cause replication blockade; however, the molecular mechanisms behind these latter sensitivities are largely unknown. Here, we report that BRCA1 promotes cell survival by directly regulating the DNA damage tolerance pathway in response to agents that create cross-links in DNA. We show that BRCA1 not only promotes efficient mono- and polyubiquitination of proliferating cell nuclear antigen (PCNA) by regulating the recruitment of replication protein A, Rad18, and helicase-like transcription factor to chromatin but also directly recruits translesion polymerases, such as Polymerase eta and Rev1, to the lesions through protein-protein interactions. Our data suggest that BRCA1 plays a critical role in promoting translesion DNA synthesis as well as DNA template switching.
Collapse
|
10
|
Takaya J, Kusunoki S, Ishimi Y. Protein interaction and cellular localization of human CDC45. J Biochem 2013; 153:381-8. [PMID: 23364835 DOI: 10.1093/jb/mvt004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CDC45, which plays a role in eukaryotic DNA replication, is a member of the CMG (CDC45/MCM2-7/GINS) complex that is thought to function as a replicative DNA helicase. However, the biochemical properties of CDC45 are not fully understood. We systematically examined the interactions of human CDC45 with MCM2-7, GINS and other replication proteins by immunoprecipitation. We found that CDC45 can directly interact with all MCM2-7 proteins; with PSF2, PSF3 and SLD5 in GINS subunits; and with replication protein A2 (RPA2), AND-1 and topoisomerase 2-binding protein 1. These results are consistent with the notion that CDC45 plays a role in progression of DNA replication forks. Experiments using antibodies against CDC45 show that the level of CDC45 recovered from the Triton-insoluble chromatin-containing fraction is peaked at middle of S phase in synchronized HeLa cells. However, incubation of the Triton-insoluble fraction with nucleases resulted in recovery of less than half the amount of CDC45 in the nuclease-sensitive fraction; this result is in contrast with RPA1 and proliferating cell nuclear antigen distribution. These results indicate that a considerable portion of CDC45 localizes in a region other than the DNA replication forks in nuclei or it localizes on the replication forks but it is not fractionated with the fork proteins owing to its tight association with presumably nuclear scaffolds.
Collapse
Affiliation(s)
- Junichiro Takaya
- College of Science, Ibaraki University, Mito, Ibaraki 351-8511, Japan
| | | | | |
Collapse
|
11
|
Abstract
The eukaryotic cell replicates its chromosomal DNA with almost absolute fidelity in the course of every cell cycle. This accomplishment is remarkable considering that the conditions for DNA replication are rarely ideal. The replication machinery encounters a variety of obstacles on the chromosome, including damaged template DNA. In addition, a number of chromosome regions are considered to be difficult to replicate owing to DNA secondary structures and DNA binding proteins required for various transactions on the chromosome. Under these conditions, replication forks stall or break, posing grave threats to genomic integrity. How does the cell combat such stressful conditions during DNA replication? The replication fork protection complex (FPC) may help answer this question. Recent studies have demonstrated that the FPC is required for the smooth passage of replication forks at difficult-to-replicate genomic regions and plays a critical role in coordinating multiple genome maintenance processes at the replication fork.
Collapse
Affiliation(s)
- Adam R. Leman
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| |
Collapse
|
12
|
|
13
|
Watanabe E, Ohara R, Ishimi Y. Effect of an MCM4 mutation that causes tumours in mouse on human MCM4/6/7 complex formation. J Biochem 2012; 152:191-8. [PMID: 22668557 DOI: 10.1093/jb/mvs060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It has been reported that a point mutation of minichromosome maintenance (MCM)4 causes mammary carcinoma, and it deregulates DNA replication to produce abnormal chromosome structures. To understand the effect of this mutation at level of MCM2-7 interaction, we examined the effect of the same mutation of human MCM4 on the complex formation with MCM6 and MCM7 in insect cells. Human MCM4/6/7 complexes containing the mutated MCM4 were formed, but the hexameric complex formation was not evident in comparison with those containing wild-type MCM4. In binary expression of MCM4 and MCM6, decreased levels of MCM6 were recovered with the mutated MCM4, compared with wild-type MCM4. These results suggest that this mutation of MCM4 perturbs proper interaction with MCM6 to affect complex formation of MCM4/6/7 that is a core structure of MCM2-7 complex. Consistent with this notion, nuclear localization and MCM complex formation of forcedly expressed MCM4 in human cells are affected by this mutation. Thus, the defect of this mutant MCM4 in interacting with MCM6 may generate a decreased level of chromatin binding of MCM2-7 complex.
Collapse
Affiliation(s)
- Emi Watanabe
- College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 351-8511, Japan
| | | | | |
Collapse
|
14
|
Abstract
In eukaryotes, the Mcm2-7 complex forms the core of the replicative helicase - the molecular motor that uses ATP binding and hydrolysis to fuel the unwinding of double-stranded DNA at the replication fork. Although it is a toroidal hexameric helicase superficially resembling better-studied homohexameric helicases from prokaryotes and viruses, Mcm2-7 is the only known helicase formed from six unique and essential subunits. Recent biochemical and structural analyses of both Mcm2-7 and a higher-order complex containing additional activator proteins (the CMG complex) shed light on the reason behind this unique subunit assembly: whereas only a limited number of specific ATPase active sites are needed for DNA unwinding, one particular ATPase active site has evolved to form a reversible discontinuity (gate) in the toroidal complex. The activation of Mcm2-7 helicase during S-phase requires physical association of the accessory proteins Cdc45 and GINS; structural data suggest that these accessory factors activate DNA unwinding through closure of the Mcm2-7 gate. Moreover, studies capitalizing on advances in the biochemical reconstitution of eukaryotic DNA replication demonstrate that Mcm2-7 loads onto origins during initiation as a double hexamer, yet does not act as a double-stranded DNA pump during elongation.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | |
Collapse
|
15
|
Sugiyama T, Chino M, Tsurimoto T, Nozaki N, Ishimi Y. Interaction of heliquinomycin with single-stranded DNA inhibits MCM4/6/7 helicase. ACTA ACUST UNITED AC 2011; 151:129-37. [DOI: 10.1093/jb/mvr130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|